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Abstract- Neural networks and the Kriging method are
compared for constructing £tness approximation models
in evolutionary optimization algorithms. The two mod-
els are applied in an identical framework to the optimiza-
tion of a number of well known test functions. In addi-
tion, two different ways of training the approximators are
evaluated: In one setting the models are built off-line us-
ing data from previous optimization runs and in the other
setting the models are built online from the data available
from the current optimization.

1 Introduction

This study focuses on the use of meta-modeling techniques in
evolutionary optimization algorithms. The driving idea is to
substitute computationally expensive objective function eval-
uations with a computationally cheap, data-driven approxi-
mation of the original objective function [8].

Following [9], the optimization algorithm used for this
study is based on the Evolution Strategy with covariance ma-
trix adaptation (CMA) [6]. The approximation model is used
according to the population control model introduced in [9].
That means, that, for a given number of consecutive genera-
tions c (called a ”cycle”), the offspring individuals of f ≤ c

generations are evaluated by the original objective function,
while the offspring individuals of the remaining c− f gener-
ations of a cycle are evaluated by the approximation model.
It appears to be realistic to set a £xed budget of 2000 evalu-
ations of the original objective function. Thus, with a given
cycle-length c, the number of generations g the (µ, λ) evolu-
tion strategy may run depends on the frequency f through

g =
c

λ · f
· 2000.

In this study, two different meta-modeling techniques are
compared: one is feed-forward neural networks implemented
in [9] and the other is the kriging method adopted in [1, 16].

Two different approaches to the adaptation of meta-
models for optimization problems are demonstrated. First,
the models are built before the optimization starts, i.e. the
models are adapted to a data set that was generated before
optimization. This is called off-line learning. It is assumed
that a data set is available from previous optimization runs.
In this study, the training data sets were generated by opti-
mizing the test problems with an ordinary (1,10)-Evolution

Strategy with mutative step size adaptation [15]. The result-
ing data sets had to be truncated in case of fast convergence to
a (possibly local) optimum, since otherwise the meta-models
are likely to be over-trained in the region close to the (local)
optimum.

The second approach to meta-model adaptation involves
learning from the data that is generated in the course of op-
timization, i.e. that in the ith iteration of the optimization
algorithm all data collected in the preceding i iterations may
be used to adapt and re£ne the approximation model. This
approach is called online learning.

The remainder of the paper is organized as follows. In
Section 2, neural networks and kriging modeling techniques
are reviewed very brie¤y. Three widely used test problems,
the Ackley function, the Rosenbrock function and the Keane
function are given in Section 3. Section 4 provides the experi-
mental settings adopted in the comparative study followed by
the presentation of the simulation results in Section 5. Dis-
cussions of the results are carried out in Section 6. Section 7
summarizes the paper and suggests some open questions for
further study.

2 Neural Network and Kriging Models

2.1 Neural Network

Feed-forward neural network models have widely been used
for function approximation [12]. In most general cases, lay-
ered and fully connected networks are used in combination
with the back-propagation (BP) algorithm as the learning
method. However, it has been shown that this standard struc-
ture and the BP algorithm are often very inef£cient. To im-
prove the performance of feedforward neural networks, it is
very common to adopt a faster variation of the BP learning
algorithm and to optimize the structure of the neural network
for a given problem [13].

A Lamarckian framework of evolutionary algorithm is
employed to generate the neural network model [7], where
both the structure and the parameters are optimized. The
available data is split into training data set and a test data set,
and the £tness function for training the neural network is as
follows:

J = 0.75 ∗ ETR + 0.25 ∗ ETT , (1)

whereETR andETT are the approximation error on the train-



ing data and test data, respectively. A maximum of 10 hidden
neuron is speci£ed and the population size for neural network
training is 32. 75 generations are run. Three different runs
have been conducted for each data set and the best neural net-
work model is selected for £tness approximation.

2.2 Kriging

The kriging method [11, 3, 4, 1] models a system as a local-
ized, stochastic Gaussian process with an expected value µ

and a covariance matrix Σ. For this study, the so called Or-
dinary Kriging with a Gaussian covariance structure is used,
i.e. the system’s response Z(~x) is assumed to be of the form

Z(~x) = E(Z) + δ(~x),

where E(Z) is the expected value of Z and δ a stochastic
component with a covariance structure

c(~xi, ~xj) = exp(−θ|~xi − ~xj |
2),

where θ is to be adapted to the sample data by Maximum
Likelihood and |~xi − ~xj | is the Euclidean distance between
~xi and ~xj .

The prediction for ~x is given as

Ẑ(~x) =
n
∑

i=1

λiZ(~xi),

where the λi are derived from the covariance matrix of the un-
derlying Gaussian process and the sample data. Additionally
the kriging method allows to estimate the mean square pre-
diction error σ2

p(~x), so that prediction intervals can be con-
structed as

s = (Ẑ(~x)− 1.96σp(~x), Ẑ(~x) + 1.96σp(~x)),

where s is a 95% con£dence interval, in case the original pro-
cess under study is indeed Gaussian.

3 Test Problems

The following well known test functions are used to compare
the performance of the algorithms (cf. [2, B2.7.3]).
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f(~x) = −a exp
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where a = 20, b = 0.2, c = 2π and−32.768 ≤ xi ≤ 32.768.
The minimum is at ~x? = ~0 with the minimal function value
f(~x?) = 0

Rosenbrock-Function

f(~x) =
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,

where −5.12 ≤ xi ≤ 5.12. The minimum is at ~x? = ~1 with
the minimal function value f(~x?) = 0.

Keane-Function
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In all the test functions, n is the dimension.

4 Experimental Setup

Simulations have been conducted for the test functions with a
dimension of 10 and 50. For each test function, 20 optimiza-
tion runs with the help of a meta-model have been performed.
In the framework for using meta-models, the control cycle c is
set to 6 and the control frequency f is £xed to 4 in contrast to
an adjustable one in [9]. The reason for a £xed frequency is to
remove possible interference between factors from the meta-
model used and those from the adaptation of the frequency,
because the main purpose of this study is the investigation of
different meta-modeling techniques.

4.1 Of¤ine

For the 10-dimensional Ackley function a set of 500 learning
data points has been used to construct the meta-models. For
the 50-dimensional Ackley function a set of 1000 learning
data points has been used.

For the 10-dimensional Rosenbrock function a set of 150
learning data points has been generated for building the meta-
model. For the 50-dimensional Keane function a set of 700
learning data points has been used. The data are taken from
previous optimization runs with standard evolution strategies.

For the 10-dimensional Keane function a set of 150 learn-
ing data points has been created. For the 50-dimensional
Keane function a set of 700 learning data points has been
used. All data were taken from previous optimization runs
with standard evolution strategies.



4.2 Online

New data becomes available during the optimization. Obvi-
ously, these new data should be used for updating the meta-
models. For the neural network model, the data generated
during the optimization are used to tune the parameters of
the neural network online using the RPROP learning method
[14]. In other words, the structure of the neural network is
determined based on the off-line training data and does not
change during optimization.

There are some differences in the online adaptation of the
kriging model. During the online learning, a separate krig-
ing model is constructed for each new offspring individual
whose £tness is to be predicted. To do so, a subset of all in-
dividuals that have already been evaluated with the original
objective function S is computed. A kriging model is then
£tted to the data in S. The resulting model is used for pre-
diction of the new individual. In this study, the set S consists
of the 10 individuals that are closest to the individual to be
predicted. In addition, the lower 95% con£dence interval is
adopted for predictions during the online construction of the
kriging models, following a similar suggestion in [5].

5 Results

5.1 Off-line Learning

The comparison in this subsection will focus on the off-
line learning situation with an evolution control frequency of
f = 4. Figures 1-6 each show the convergence of the evo-
lutionary optimization runs supported by meta-model (”Krig-
ing” and ”Neural Net”) and those without the support of the
meta-models (”Plain”). Notice that only the £tness of the in-
dividuals using the original £tness function is shown in the
£gures.

Table 1 summarizes the results. A strategy is assigned a
number 1 if it shows the best performance on a test function,
a -1 if it shows the worst performance. Otherwise, a 0 is
assigned to the strategy. Comparing the sum of the values

Kriging Neural Net Plain

Ackley 10 dim. -1 0 1
Ackley 50 dim. -1 0 1

Rosenbrock 10 dim. 1 -1 1
Rosenbrock 50 dim. 0 -1 1

Keane 10 dim. 0 1 -1
Keane 50 dim. 0 0 0

Sum -1 -1 3

Table 1: The number 1 is assigned to case with the best per-
formance, whereas −1 to the worst performance and 0 oth-
erwise. A summary of the results obtained with the model
assisted and the plain evolution strategy is provided. For the
50-dimensional Keane function all strategies are awarded a 0,
since the results are extremely close.
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Figure 1: 10-dimensional Ackley function, off-line learning,
f = 4. The kriging supported strategy is the worst, while the
plain evolution strategy is better than the neural net supported
strategy.

assigned in this way, we £nd that the plain strategy wins the
highest points.

Especially for the Ackley function it is obvious from £g-
ures 1 and 2 that the evolutionary algorithm does not bene£t
from the introduction of the meta-models. In the 50 dimen-
sional case there is hardly any convergence of the model as-
sisted strategies visible, while the plain strategy still seems to
improve even in the last iteration.

For the Rosenbrock function the results are slightly less
clear, since in the 10 dimensional case (£gure 3) at least the
kriging supported strategy yields results that are as good as
the results of the plain strategy. But in 50 dimensional cases,
the plain strategy is clearly better than the supported strate-
gies.

Different results can be seen for the Keane function in £g-
ures 5 and 6. In this case the plain strategy does not con-
verge to a clearly better value than the other two strategies,
for the 10 dimensional case it even yields the worst results.
In 50 dimensions there is hardly a difference visible from the
graphics.

5.2 Online Learning

The comparison in this subsection will focus on the online
learning situation with a frequency of f = 4. Figures 7-
12 each show the convergence of the meta-model supported
(”Kriging” and ”Neural Net”) and the unsupported (”Plain”)
optimization runs.

The plain strategy performs best for the 50-dimensional
Ackley function and the 50-dimensional Rosenbrock func-
tion. Only for the 50-dimensional Keane function it performs
worst.

The kriging model yields best results for the 10-
dimensional Rosenbrock function and the 50-dimensional
Keane function. It is the worst for the 10-dimensional Keane
function and the 10-dimensional Ackley function.
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Figure 2: 50-dimensional Ackley function, off-line learning,
f = 4. The plain, unsupported strategy is clearly the best.
The meta-model supported strategies perform almost identi-
cally.

0 50 100 150 200
10

1

10
2

10
3

10
4

10
5

Generations

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

Rosenbrock, 10dim, offline

Kriging
Neural Net
Plain

Figure 3: 10-dimensional Rosenbrock function, off-line
learning, f = 4. The Kriging supported strategy and the
plain strategy perform comparably well, with the plain strat-
egy being slightly better-in the end. The neural net supported
strategy exhibits worse results than the two other strategies.

0 50 100 150 200
10

2

10
3

10
4

10
5

10
6

Generations

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

Rosenbrock, 50dim, offline

Kriging
Neural Net
Plain

Figure 4: 50-dimensional Rosenbrock function, off-line
learning, f = 4. The plain, unsupported strategy performs
best. The kriging supported strategy is slightly better than the
neural net supported strategy.

0 50 100 150 200

−10
−0.8

−10
−0.7

−10
−0.6

Generations

O
bj

ec
tiv

e 
F

un
ct

io
n 

V
al

ue

Keane, 10dim, offline

Kriging
Neural Net
Plain

Figure 5: 10-dimensional Keane function, off-line learning,
f = 4. The neural net supported strategy yields the best re-
sults, while the plain strategy is worse than the kriging sup-
ported strategy. The plain strategy seems to be get stuck quite
soon.
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Figure 6: 50-dimensional Keane function, off-line learning,
f = 4. All strategies show quite similar performances.
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Figure 7: 10-dimensional Ackley function, online learning,
f = 4. The kriging supported strategy is the worst, while the
plain evolution strategy is slightly better than the neural net
supported strategy.

The neural network wins on the 10-dimensional Ackley
function and the 10-dimensional Keane function. It loses
on the 50-dimensional Ackley function, the 10-dimensional
Rosenbrock function and the 50-dimensional Rosenbrock
function.

Table 2 summarizes the results: each strategy is awarded
a 1, if it has better performance than the other two strategies
on a test function, a −1 if it shows the worst performance
and a 0 otherwise. Comparing the sum of the values assigned
in this way, we show that the plain strategy is the best strat-
egy as a whole. Although these results are not suf£cient to
reach a clear conclusion on the performance of the strategies,
it does imply that there is no obvious advantage in using the
meta-models, when the generation-based evolution control is
applied with a £xed frequency to call the approximate model.

6 Discussion

The results obtained in this study suggest that neither Kriging
nor neural network approximations can achieve robust and

Kriging Neural Net Plain

Ackley 10 dim. -1 1 0
Ackley 50 dim. 0 -1 1

Rosenbrock 10 dim. 1 -1 0
Rosenbrock 50 dim. 0 -1 1

Keane 10 dim. -1 1 0
Keane 50 dim. 1 0 -1

Sum 0 -1 1

Table 2: Assigning 1 for best performance, -1 for worst per-
formance and 0 otherwise, the table summarizes the results
obtained with the model assisted and the plain evolution strat-
egy.
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Figure 8: 50-dimensional Ackley function, online learning,
f = 4. The neural net supported strategy obtains the worst,
while the plain unsupported strategy achieves best.
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Figure 9: 10-dimensional Rosenbrock function, online learn-
ing, f = 4. The Kriging supported strategy starts very well, is
beaten by the plain strategy between the 50th and 100th gen-
eration, but interestingly £nishes best in the end. The neural
net supported strategy turns out with the worst performance.
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Figure 10: 50-dimensional Rosenbrock function, online
learning, f = 4. The plain, unsupported strategy is slightly
better than the kriging supported strategy, which itself is
slightly better than the neural net supported strategy.
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Figure 11: 10-dimensional Keane function, online learning,
f = 4. The neural net supported strategy yields the best re-
sults, while the plain strategy is better than the kriging sup-
ported strategy.
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Figure 12: 50-dimensional Keane function, online learning,
f = 4. The kriging supported strategy achives the best re-
sults, while the neural net supported strategy is slightly better
than the plain strategy. The results are very close though.

convincing acceleration of the optimization, when the gener-
ation based evolution control strategy is applied with a £xed
control frequency.

It is not surprising to observe that the prediction quality
differs depending on the learning schedule. Our results in-
dicate that meta-models trained off-line could provide unex-
pected predictions on unseen data points while models trained
online give better predictions, which suggests that the con-
struction of local meta-models is more practical and reliable
than global models. Nevertheless, evolutionary optimization
supported by local models with relatively good prediction
quality could still disturb the evolutionary search. From the
results obtained in this study, no conclusion can be drawn on
which meta-model is better for £tness approximation in evo-
lutionary optimization.

Compared to the more promising results obtained in [10],
it is believed that the online adaptation of the control fre-
quency may be critical to the success of using meta-models
for £tness evaluation in evolutionary computation. A straight-
forward explanation to this is the fact that if a meta-model is
of poor quality, then this model should not be used often at
the beginning of the search. Obviously, the model quality im-
proves as the evolutionary search proceeds. Thus, a general
rule is that the original function should be used more often
at the beginning so that the quality of the meta-model can be
improved signi£cantly. After a certain number of generations,
the model becomes much more reliable and can be employed
more often for £tness evaluation.

In addition, the differences between the results found in
this study and the results reported in [5] indicate that the
way how the meta-model is used plays a crucial role for
the optimization performance. It is speculated that when
the quality of the meta-model is not of suf£cient quality,
individual-based evolution control could be more stable than
the generation-based evolution control.

Figures 13 to 15 show some more details of the con-



vergence of the £tness values when only the approximation
model is used. In these £gures, both the real value of the 10-
dimensional Rosenbrock function and that predicted by the
kriging model in three consecutive generations are plotted.
The real £tness values of the 10 offspring individuals of each
generation are connected by a solid line. For each individ-
ual the real £tness value and the predicted £tness value are
connected by a dashed line. The best individual of each gen-
eration based on the original £tness function is marked with
a circle and the best one based on the predicted values are
marked with a diamond.

Figure 13 shows that for the offspring individuals 990-999
and 1000-1009 only one parent is identi£ed correctly. That
means that due to the Kriging prediction some individuals
are chosen as parents that would not have been chosen if the
original £tness value would have been available. For individ-
uals 1010-1019 no parent is identi£ed correctly. It should be
noted that for individuals 990-999 even the individual with
the worst original function value is selected as a parent.

From £gure 14 it can be seen how the prediction qual-
ity degrades when the search proceeds on the approximation
only. For the offspring individuals 3510-3519 the approxi-
mation is quite good and the parent individuals are selected
correctly. For individuals 3520-3529 the approximate values
are a bit more off the solid line which indicates slightly worse
approximation quality. One parent is misclassi£ed. For in-
dividuals 3530-3539 the approximation is quite bad and only
one parent is identi£ed correctly.

Figure 15 shows something very annoying: The values of
the predicted £tness of the best individual is getting better
in the three generations plotted while the best value of the
original function is getting worse. These results indicate that
evolution on a meta-model only could lead to very unreliable
results.
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Figure 13: 10-dimensional Rosenbrock function, f = 3. For
individuals 990-999 Kriging suggests the worst individual as
one of the parents. For individuals 1010-1019 Kriging does
not suggest one single parent correctly.
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Figure 14: 10-dimensional Rosenbrock function, f = 3. For
individuals 3510-3519, parents are identi£ed correctly. For
individuals 3520-3529, two out of three parents are identi£ed
correctly. For individuals 3530-3539 only one parent is iden-
ti£ed correctly.
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Figure 15: 10-dimensional Rosenbrock function, f = 3. Dur-
ing three generations the predicted performance improves,
while the real performance degrades.

7 Summary and Conclusion

In this study three different test functions, namely the Ackley
function, the Rosenbrock function, and the Keane function
have been used to compare the optimization performance us-
ing evolution strategies assisted by meta-models. As meta-
models the kriging and the neural network based techniques
are used.

For both techniques, two different modes of model con-
struction have been considered. In the off-line learning mode,
data from previous optimization runs are used to build a



model before it is applied in optimization. In the online learn-
ing mode, the meta-model is updated repeatedly with new
data generated from the optimization. In all cases the online
learning mode showed signi£cantly better results than the off-
line learning mode.

During optimization the meta-model is used according to
the generation-based evolution control. Neither the kriging
model nor the neural network could clearly demonstrate an
advantageous performance over an evolutionary optimization
without meta-models. Very often, optimization assisted with
a meta-model could leads to a degraded performance.

This study leaves a number of open questions:

• What are the main reasons for performance degradation
of optimization, when the number of ”model only” it-
erations is increased?

• How far can the adaptation of strategy parameters of
evolution strategies be in¤uenced by using the meta-
model?

• Why are the results found in [5] so much better than
the results found in this study?

Answering these questions will be subject to future re-
search.
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[2] Th. Bäck, D. B. Fogel, and Zbigniew M., editors. Hand-
book of Evolutionary Computation. Institute of Physics
Publishing and Oxford University Press, Bristol/New
York, 1997.

[3] I. Clark. Practical Geostatistics. Applied Science Pub-
lishers, Essex, 1979.

[4] N. A.C. Cressie. Statistics for Spatial Data – Revised
Edition. Wiley series in probability and mathematical
statistics. John Wiley & Sons, Inc., New York, 1993.

[5] M. Emmerich, A. Giotis, M. Özdemir, Th. Bäck, and
K. Giannakoglou. Metamodel-assisted evolution strate-
gies. In V. Merelo Guervós, P. Adamidis, H.-G. Beyer,
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