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Decentralized Adaptive Fuzzy
Control of Robot Manipulators

Yaochu Jin

Abstract—This paper develops a decentralized adaptive fuzzy
control scheme for robot manipulators via a combination of
genetic algorithm and gradient method. The controller for each
link consists of a feedforward fuzzy torque-computing system and
a feedback fuzzy PD system. The feedforward fuzzy system is
trained and optimized off-line by an improved genetic algorithm,
that is to say, not only the parameters but also the structure of the
fuzzy system are self-organized. Because genetic algorithm can
operate successfully without the system model, no exact inverse
dynamics of the robot system are required. The feedback fuzzy
PD system, on the other hand, is tuned on-line using gradient
method. In this way, the proportional and derivative gains are
adjusted properly to keep the closed-loop system stable. The
proposed controller has the following merits: 1) it needs no exact
dynamics of the robot systems and the computation is time-saving
because of the simple structure of the fuzzy systems; and 2) the
controller is insensitive to various dynamics and payload uncer-
tainties in robot systems. These are demonstrated by analyses of
the computational complexity and various computer simulations.

I. INTRODUCTION

DYNAMIC control of robot manipulators is one of the
most important topics in robotics. Various modern control

strategies have been widely investigated to deal with the
high nonlinearity and strong coupling of the robot dynamics.
These controllers are generally designed assuming an exact
knowledge about the model structure and do not include
nonlinear friction, backlash and other uncertainties in robot
systems.

Among the model-based robot controllers reported in the
literature that have proved to be effective, the PD control with
feedforward torque computation is the most promising one [1],
[2]. It is also, perhaps, the simplest controller that can be im-
plemented for practical position control of robot manipulators.
Furthermore, it has proved that the PD control with computed
feedforward is locally exponentially stable provided that the
proportional and derivative gains are sufficiently large [3], [4].
However, it needs the full inverse dynamics of the robot and
the computation is time-consuming. In addition, sufficiently
large gains are undesirable in practice. To deal with the latter
problem, [5] develops a design procedure that sets the lower
bounds on the proportional and derivative gains that guarantee
stability of the closed-loop system. The procedure is carried
out under the assumption that the robot dynamic model is
known and the desired trajectory is properly chosen. That is to
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say, if there exists large amount of uncertainties, the method
will probably fail.

Since the inverse dynamics of the robot can not be ex-
actly known, conventional adaptive feedforward compensation
systems are suggested in [6], [7]. Besides, artificial neural
networks are introduced to derive the feedforward torque
because of their learning ability and universal approximating
capability [8]–[10]. An alternative to the artificial neural
network is the fuzzy system. It has been shown that the
fuzzy systems are also universal approximators and capable
of learning. Reference [11] tries to model each parameter in
the manipulator dynamic equations with a set of fuzzy rules.
However, since the robot dynamics are coupled and there are
too many parameters to be modeled, the proposed method is
very hard to implement in real systems. It is noticed that for a
conventional fuzzy system, the number of fuzzy rules grows
exponentially when the number of input variables increases.
Therefore, it is very important to design a decentralized fuzzy
controller for a multivariable coupled system.

This paper aims at building a position controller for robot
manipulators, which not only exhibits strong robustness in
the presence of a variety of uncertainties, but also is com-
putationally very efficient. This is realized by proposing a
decentralized adaptive fuzzy controller, which is composed
of a feedforward fuzzy system that compensates the nonlin-
earity of the robot and a feedback fuzzy controller that is
adaptive to the uncertainties in the robot system. Because a
decentralized strategy is suggested and a simple input–output
form is adopted, the number of fuzzy rules in the system is
greatly reduced and thus the computational complexity of the
algorithm is significantly simplified. The feedforward fuzzy
systems are made more compact through an optimization of
the rule structure. Since the PD gains are tuned on-line, it is
not necessary to design them in advance and the closed-loop
system keeps stable even in the presence of large uncertainties.

The remainder of the paper is organized as follows.
Section II describes the off-line training and optimization
of the feedforward fuzzy systems using genetic algorithms.
This is followed by Section III that deals with the on-line
tuning of the gains of the fuzzy PD controller using gradient
method. In Section IV, the computational complexity of
the controller is carefully considered and it is shown that
the proposed controller is computationally very efficient.
Simulation research is carried out in Section V, which
focuses its attention on the performance of the controller
in the presence of various parameter uncertainties, unmodeled
nonlinear friction and unknown payloads. A summary of the
significance of the paper is provided in Section VI.
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II. OFF-LINE TRAINING AND OPTIMIZATION OF THE

FEEDFORWARDFUZZY SYSTEMS VIA GENETIC ALGORITHMS

The successful application of the fuzzy control depends
on the parameters and the structure of the concerned fuzzy
rule system. However, they are usually decided upon by rule
of thumb. Therefore, it is receiving increasing attention to
build self-organizing fuzzy rule bases. By a self-organizing
fuzzy system, we mean it should embrace the following two
characteristics: 1) the fuzzy system is capable of setting up
an optimal fuzzy rule structure so that the fuzzy rule base is
complete, consistent and compact; and 2) the fuzzy system is
able to automatically adjust the parameters both in condition
part and consequence part of the rules. Until now, a lot of
efforts have been made to realize such features. To provide
the fuzzy system with the first function abovementioned,
Yamaguchiet al. [11] and Nieet al. [12] use BAM and CPN
neural network, respectively, whilst Nakamoriet al. [13] select
the clustering technique. As for the second function, backprop-
agation neural networks [14], pi–sigma neural network [15]
and simulated annealing [16] are attempted for supervised
parameter learning, while a neuron-like structure is used as
reinforcement learning [17]. Karr [18] first introduces genetic
algorithm into the self-learning of the fuzzy systems. Parket al.
[19] apply GA to the optimization of fuzzy relation matrix and
fuzzy membership functions. Generally, these two functions
are realized separately.

This section discusses the training of the parameters and
the optimization of the feedforward fuzzy systems based on
genetic algorithms. We first describe the fuzzy model of the
robot dynamics, and then apply the genetic algorithms to
adjusting the parameters of the fuzzy model with a standard
structure form. Further investigation shows that the trained
fuzzy system has much room for improvement. To this end, we
use the genetic algorithm to optimize the parameters and the
structure of the rules simultaneously. In this way, the number
of the fuzzy rules is further reduced.

A. Decentralized Fuzzy Modeling of a Robot Manipulator

Two main approaches are used by most researchers to derive
the dynamic model of a manipulator—the Lagrange–Euler
(L–E) and the Newton–Euler (N–E) formulations. From the
control point of view, the L–E formulation is very desirable.
For an -link robot arm, the Lagrange equation of motion is
as follows:

(1)

where is the torque exerted on joint is the joint dis-
placement, and are the effective inertia and coupling
inertia, stands for the centrifugal and Coriolis forces,
and is the gravity loading. It should be noticed that, for
a planned trajectory, the desired torque depends not only on
the trajectory, the geometric and inertia parameters of the link
itself, but also on the parameters of other links and the payload
at the end effector.

In order to model the dynamics of each link with a fuzzy
system, it is necessary to choose proper input and output
variables. For the sake of computational simplicity, it is
necessary and feasible to select a noninteractive fuzzy system.
In our case, only position and velocity are selected as two input
variables and naturally the feedforward torque is selected as
the output. Consequently, the fuzzy rules in the feedforward
system are expressed in the following form:

If is and is then is (2)

where and are the fuzzy sets for and is the
crisp output of each fuzzy rule andis the time instant. Note
that the premise variables do not appear in the consequence
part of the rules, because it is found that they do not make
much sense for improving the precision of the fuzzy model.
What is worse, they sometimes complicate the algorithm
seriously. According to Takagi and Sugeno [20], if the rule
base has rules altogether, the final output of the fuzzy
model is calculated as follows:

(3)

(4)

Given a set of input–output data, the premise and consequence
parameters can be determined by use of a complex search
algorithm and a recursive least-square algorithm [21].

No doubt, the performance of the fuzzy model is dependent
on the structure and the parameters of the fuzzy rule base
resulted from the learning procedure, which is the subject of
the following part of this section.

B. Genetic Algorithm-Based Parameter Learning

Genetic algorithm (GA) is a stochastic optimization tech-
nique mimicking the natural selection, which consists of
three main operations, namely, reproduction, crossover, and
mutation [22]. For the implementation procedure, please refer
to Fig. 1. Although genetic algorithms were developed a few
decades ago, concrete theoretical analyses of the algorithm
have not been provided until in the recent years. Reference
[23] concludes that the canonical genetic algorithm can not
always find the optimal solution within definite time. The
so-called premature convergence is perhaps an illustration of
this conclusion. Furthermore, the paper points out that if the
chromosome with the best performance in each generation is
reserved for the next generation, the algorithm will globally
converge. Inspired by these conclusions, we introduce the
following two measures to improve the convergence property
of the genetic algorithm.

1) In reproduction, we stochastically introduce a randomly
generated gene at a probability of to replace one of
the two parents selected for reproduction.

2) Select the best performed genes in the current population
at a rate of and place them directly in the next
generation.
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Fig. 1. Implementation flow chart of GA.

These two measures can be further explained with the results
in [23]. If the reproduction is carried out in the traditional way,
the best gene will probably be lost and thus the convergence
can not be guaranteed. However, if we only adopt the second
measure, the procedure of the evolution is no longer a Markov
process and thus it does not satisfy the assumption of the
convergence theory. Despite our successful application of
these measures, mathematical analyses of them still lack. The
parameter and are adjusted in the following way. At
the beginning of the learning, is relatively large and is
relatively small, and later, vice versa.

In order that the feedforward fuzzy system can realize
the mapping of the robot inverse dynamics, the following
quadratic form of performance index is established:

(5)

where and are the desired torque and torque
computed from the feedforward fuzzy system, respectively,

is the number of training samples. Because the genetic
algorithm endeavors to maximize the fitness function, and
because our aim is to minimize the above performance index,
the fitness function of each gene is calculated as follows:

(6)

where is the performance index and 1 is introduced to
prevent the fitness function from becoming infinitely large.
Suppose the membership functions in fuzzy system (2) take
a Gaussian form as

(7)

where and are the center and width of the Gaussian
function. For simplicity, the membership function (MF) in (7)
is notated as .

The coding of the parameters to be adjusted can be ar-
ranged as follows if each variable is partitioned intofuzzy
subspaces:

where, . In the above list, each element stands for a
certain number of binary bits that encode the corresponding
parameter. In order to reduce the dimension of the searching
space, the whole length of each gene should be limited as
short as possible. To this end, each parameter to be optimized
is normalized to a certain range.

What the GA’s are concerned, we can make the following
observations.

1) The searching of the genetic algorithm starts from mul-
tiple initial states simultaneously and proceeds in all of
the parameter subspaces in parallel, which provides GA
an excellent parallel processing ability and an inherent
global optimization capacity.

2) GA requires almost no prior knowledge of the concerned
system, which enables it to deal with the completely
unknown systems that other optimization methods may
fail.

3) GA can not evaluate the performance of a system
properly at one step. For this reason, it can generally
not be used as an on-line optimization strategy and is
more suitable for fuzzy modeling rather than for fuzzy
control.

Without the loss of generality, we take a two-link rigid robot
as an example for simulation. It should be pointed out that in
training the feedforward fuzzy system, the algorithm does not
require full knowledge of the robot inverse model because the
optimization is completely data-driven. In practice, the training
data can be obtained by experimentation or by establishment
of an ideal model. By experimentation, we can exert a bounded
random torque on the robot to be controlled. It may also
be possible to derive an ideal mathematical model. This is
theoretically feasible and helpful for training and checking of
the fuzzy system, despite that the derived model is not the same
as the real one. In computer simulation, we need a model to
emulate the behavior of a robot to collect training data. The
robot model used in simulation is shown in Section V, where

. At the training
stage, no nonlinear friction and payloads are considered. The
trajectory for the off-line training is as follows:

(rad) (8)

(rad). (9)

At first, both input variables in each link are partitioned into
four fuzzy subsets and thus 16 fuzzy rules in the standard form
of (2) are set up for each link. Then, genetic algorithm is used
to tune the parameters so that the fuzzy system can realize the
mapping of the inverse robot dynamics. The population size
of GA is 50 and the length of each gene is 160. The crossover
and mutation probabilities are set to 0.96 and 0.1, respectively.
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TABLE I
STANDARD RULE BASE OF LINK 1

TABLE II
STANDARD RULE BASE OF LINK 2

After about 60 generations of learning, the GA searching
process converges. The termination condition is decided by an
average mapping error criterion determined in advance. The
fuzzy models for link 1 and link 2 resulted from the best
chromosome are shown in Tables I and II, respectively. For
example, the first fuzzy rule in Table I is

If is and is

then is

Fig. 2 shows the approximating results of the fuzzy systems.
The average approximating errors are 0.134 and 0.082, re-
spectively.

If the performance of the fuzzy systems is only evaluated
by the approximating precision, the above fuzzy systems with
a standard structure are acceptable. However, we find in
simulation that the average firing rate of the rules are very
low. For example, on average only 50% and 22% of the
fuzzy rules in the rule base of link 1 and link 2 are fired
at each time instant. It indicates that the fuzzy systems are not
compact enough and the structure of the fuzzy rules needs to
be optimized.

C. Genetic Algorithm Based Structure Optimization
and Parameter Learning

It is straightforward to optimize the structure and parameters
of the fuzzy rules simultaneously using genetic algorithms.
Each fuzzy system is represented as a string composed of
two substrings. The first substring, which has the same form
illustrated as in Section II-B, is to optimize the parameters of
the fuzzy systems. The second substring encodes the structure

of the fuzzy rule such that one integer number represents one
membership function (MF) in the space of input variable in
question. The MF’s in the first substring are numbered in
ascending order according to their centers. For example, a
number “1” represents the MF with the lowest center. Since
each variable is supposed to have at most four subspaces, the
valid numbers in the second substring are 0, 1, 2, 3, and 4. The
number “0” implies that this variable does not appear in the
premise part of the rule. If both variable take a value of “0”
in the second substring, then this rule is deleted from the rule
base. It is also possible that more than one rule in the rule base
has the same premise. In this case, only the rule that appears
first is kept, so that the rules are consistent. An example of
the second substring is given as follows:

The corresponding fuzzy rules are:

: If is and is , then is
: If is , then is

...
: (Deleted).

In order to optimize the structure, the performance index in
(5) is rewritten as

(10)



JIN: DECENTRALIZED ADAPTIVE FUZZY CONTROL 51

Fig. 2. Off-line training of the inverse dynamics (without structure opti-
mization).

where is the weighting constant, is the penalty for
model complexity and is expressed as:

the total number of rules in the rule base
the average number of the fired rules

(11)

The value of is set to 0.1 for link 1 and 0.25 for link 2. We
suppose a rule is fired when the membership grad is greater
than 0.05. In case no rules are fired or there are no rules in
the rule base, will be set to a very large value.

The simulation results are inspiring. The optimized rule
bases for link 1 and link 2 have eight and 11 rules, respectively,
and the firing rates are raised to about 75% and 32%, respec-
tively. The rule bases for the two links are listed in Tables III
and IV, and the approximating results are demonstrated in
Fig. 3. The average approximating errors are 0.132 and 0.122,
respectively. We see that the approximating errors are quite
satisfying, although the number of the fuzzy rules are reduced.

III. D ESIGN OF THE ADAPTIVE

FEEDBACK FUZZY PD CONTROLLERS

If the feedforward fuzzy system compensates the nonlinear
dynamics of the robot to a certain accuracy, the closed-loop
system can be regulated by a PD controller with fixed gains.
However, if the uncertainties in the robot system increase, the

performance of the controller deteriorates seriously. In order
to solve this problem, an adaptive fuzzy feedback controller is
suggested in this section. The feedback fuzzy controller has a
PD-like structure, and is able to adjust its parameters when
the uncertainties in the robot system vary. The adaptation
mechanism is driven by the gradient method based on a
quadratic performance index that is widely adopted in optimal
control. Fortunately, the algorithm depends on neither the
inverse dynamics nor the full perturbation model of the robot.
Paper [24] shows that the gradient method based learning
algorithm can work just if the sensitive model of the controlled
system is available. Moreover, the sensitive model can be
replaced with its sign [25].

This section first derives the decentralized perturbation
model of each link to show how the sensitive model can
be obtained. Then the learning algorithm for the PD gains
is presented.

A. Decentralized Perturbation Model of the Robot

The dynamics of a robot in (1) can be expressed in the
following form [26]:

(12)

where are
the position and velocity vectors, respectively, andis the
number of the degree of the freedom. With this formulation,
we intended to find a feedback control law such that the closed-
loop system is asymptotically stable and tracks the desired
trajectory as close as possible.

Since the inverse dynamics are learned by the feedforward
fuzzy systems, the desired torques can be computed from
the fuzzy models. These computed torques can be treated as
nominal torque values. Because of the approximating errors
of the feedforward fuzzy systems and because the working
conditions of the robot varies, there exists joint errors if only
the feedforward torques are exerted on the robot. Nevertheless,
if the errors between the computed torques and the real
nominal torques are small, then the joint errors will be small
and the dynamic equations of the robot can be expanded in
the vicinity of the desired trajectory set points to obtain the
associated perturbation equations.

Given the desired trajectory and provided the feedforward
torques are acceptably accurate, (12) can be linearized along
the nominal trajectory

(13)

where and are the gradients of
evaluated at and , respectively,

, and and are the nominal values of
and . Let and , then we

have the following perturbation equation for the robot system:

(14)

As a result, the control problem reduces to producing a proper
so that converges to zero. Rewrite (14) in the
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TABLE III
THE OPTIMIZED FUZZY RULE BASE OF LINK 1

TABLE IV
THE OPTIMIZED FUZZY RULE BASE OF LINK 2

Fig. 3. Off-line training of the inverse dynamics (with structure optimiza-
tion).

discrete-time form and let and ,
then we have

(15)

Fig. 4. Neural network structure for identification of the perturbation model.

where and are and matrices,
respectively. However, this linear perturbation model is still
coupled among the links. To make the proposed controllers
completely noninteractive, we rewrite (15) in the form of
decentralized subsystems

(16)

where, accounts for the coupled terms,denotes theth
link of the robot. Since the inverse dynamics are unknown, the
above model can not be obtained analytically. Usually it can
be identified by the recursive least-square algorithm. However,
[27] suggests that a linear system can be expressed by a
linear two-layer neural network (see Fig. 4) and its parameters
can be estimated efficiently using-rule. For example, the
adaptation algorithm for the sensitive model parameterhas
the following form:

(17)

where is the predicted
value of , and is the learning constant. It is obvious
that this type of learning algorithm is much simpler than that
of the least-square method.
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Fig. 5. Diagram of the proposed decentralized adaptive fuzzy controller.

B. Design of the Feedback Controller

The fuzzy rules in the feedback fuzzy controller appear as
follows:

If is and is

then (18)

Obviously, it is in the form of a PD controller. Consequently,
the final output of the feedback controller is given by

(19)

(20)

where is the number of the feedback fuzzy rules, and
are the fuzzy subsets defined on the universe ofand .
The fuzzy PD gains are adjusted to minimize the following
quadratic performance index:

(21)

where and are weighting constants. According to the
gradient method, the learning algorithm of the parameters in
the feedback fuzzy system can be derived as follows:

(22)

(23)

In (23), the sensitive model can be derived from (16). There-
fore, we have

(24)

Similarly, can be adjusted by the following algorithm:

(25)

How to compute the sensitive model of the controlled plant
is worth discussing. If the system is known, it is very easy
to obtain such a model. When the system is unknown and if
the concerned system is SISO, then there are three choices
proposed by Psaltiset al. [24], Saerenset al. [25], and Wuet
al. [28], respectively. In the MIMO situation, Jinet al. [29] use
the approximating reasoning to obtain the partial derivatives.
It is argued that in some cases, the use of sensitive model is
better than the use of its sign. This is the reason why we try to
identify the sensitive model instead of utilizing its sign. The
closed-loop system is shown in Fig. 5.

IV. COMPUTATIONAL COMPLEXITY

Whether a designed controller is practical or not depends
greatly on its computational complexity because the computing
capacity of a low-cost microprocessor is limited. This section
provides the complexity of the feedforward and feedback
computation of the controller proposed in this paper. Torque
computing methods based on robot inverse dynamics and the
fuzzy feedforward system are compared. The computational
complexity of the feedback controller is also compared with
that of the adaptive controller proposed in [26]. We show that
the proposed controller is computationally very efficient.

Generally speaking, the computational burden can be eval-
uated in terms of required mathematical multiplication and
addition operations. The controller developed in this paper
consists of a feedforward torque compensation system and a
feedback fuzzy PD regulator. The computation of the feed-
forward fuzzy system has three stages: computation of the
membership functions, computation of the contribution of each
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TABLE V
COMPUTATIONAL COMPLEXITY OF THE FEEDFORWARD SYSTEM

TABLE VI
COMPUTATIONAL COMPLEXITY OF THE FEEDBACK CONTROLLER

TABLE VII
TRACKING ERRORS DUE TO PARAMETER UNCERTAINTIES (IN RADIANS)

rule and computation of the final output of the fuzzy system.
The results are provided in Table V, whereis the freedom of
the manipulator. For the standard fuzzy system, each variable
is supposed to have at most four subsets and therefore there
are eight fuzzy membership functions involved for each link.
For the optimized fuzzy system, we list the total number of
the addition and multiplication operations of the two fuzzy
systems obtained in Section II. Clearly, the computation of
the optimized fuzzy system is simpler compared with that of
the standard fuzzy system. It should be clarified that each
minimum operation is treated as one addition operation in
this paper. Table V denotes that the computation burden of
the proposed fuzzy torque computing system is significantly
reduced compared with the conventional torque computing
method, especially when the freedom of the robot increases.

The computation of the adaptive feedback fuzzy controller
can also be divided into three parts: computation of control
effect fanned out by each feedback fuzzy system, computation
of identification of the sensitive model and computation of
adaptation of the PD gains. In this paper, the error and change
of error are both partitioned into three subspaces and the
standard fuzzy structure is adopted. That is to say, there are
nine rules in the feedback fuzzy rule base for each link. As
a comparison, we list the computational complexity of our
scheme together with the adaptive feedback control proposed
in [26] (see Table VI). We make this comparison because the
feedback controller in [26] has essentially a PD structure. The
differences reside in the fact that, paper [26] identifies the
coupled perturbation model in (15) using a recursive least-
square method, while we identify the decentralized model in
(16) using a simple neural network.

V. SIMULATION RESULTS

The purpose of the simulation is to investigate the robust-
ness of the proposed controller. The robot system considered

in simulation is a two-link rigid robot, and its inverse dynamic
model is expressed as follows:

where and are the mass of each link, and are the
length, and is the gravity. In order to observe how the con-
troller behaves in presence of various uncertainties, three types
of uncertainties are considered, namely, parameter variations,
unmodeled nonlinear friction and unknown payloads.

A. Parameter Variations

By parameter variations, we mean here the mass and
length errors of the links. At the training stage, we suppose

. In this section,
three cases are taken into account. The parameter errors, the
maximum, average and final joint tracking errors are listed
in Table VII. Fig. 6 shows the position tracking errors in the
three cases.

B. Unmodeled Friction

At the off-line training stage of our simulation, we ob-
tain the training samples from the robot model, which does
not consider the nonlinear friction. In order to examine the
performances of the controller in the presence of unmodeled
nonlinear friction, the following unmodeled nonlinear friction
is added at the control stage:

(26)
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Fig. 6. Position tracking errors in the presence of parameter uncertainties.

where and are the Columbus and viscous friction,
respectively, which can be expressed by

(27)

(28)

where, and are constants. In simulation, we set
. The tracking errors of link 1

and link 2 are given in Fig. 7. The final errors of the two links
are 0.0043 (rad) and 0.0019 (rad), respectively.

C. Unknown Payloads

In robot systems, the unknown payload is one of the
major dynamic uncertainties. Compared with the parameter
uncertainties and unmodeled friction, the influence of unknown
payload is much greater. In simulation, the robot has a payload
of 1 kg, 2 kg, and 3 kg, respectively, which are supposed to
be unknown. The simulation results are provided in Fig. 8
and Table VIII.

From the simulation results provided above, we draw the
conclusion that the proposed controller is quite insensitive to
various uncertainties in the robot dynamics. However, if the
uncertainties become unreasonably large, the controller will
collapse. This can be explained that under such situations, the

(a)

(b)

Fig. 7. Position tracking errors in the presence of unmodeled nonlinear
friction. (a) Link 1, (b) Link 2.

torques computed from the trained feedforward fuzzy systems
are no longer near the nominal torques, and consequently, (13)
does not hold.

In order to discuss the relationship between the final val-
ues of and and the amount of uncertainties in the
system, Table IX provides the learning results of the fuzzy
PD gains when the unknown payloads are 1.0 kg and 3.0 kg,
respectively. It demonstrates that the fuzzy controller can vary
its parameters properly with the amount of the uncertainty.
Remember that in the feedback fuzzy systems, the number of
the fuzzy subsets for and in (18) are both set
to three, namely for positive, for zero and for negative.

VI. CONCLUSION

In this paper, a decentralized fuzzy control scheme for robot
manipulators is developed. The controller for each link has a
feedforward fuzzy torque computing system and an adaptive
feedback controller. Due to the simple structure of the fuzzy
systems, the on-line computational burden for nonlinear feed-
forward compensation is greatly relaxed. Genetic algorithm
is applied to fuzzy system training because it is fully data-
driven and is able to optimize the structure of the fuzzy system
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TABLE VIII
TRACKING ERRORS DUE TO UNKNOWN PAYLOADS (IN RADIANS)

TABLE IX
FUZZY PD GAIN ADAPTATION IN THE PRESENCE OFUNKNOWN PAYLOADS. (y: THE UNKNOWN PAYLOAD IS 1.0 kg; z: THE UNKNOWN PAYLOAD IS 3.0 kg)

Fig. 8. Position tracking errors in the presence of unknown payloads.

simultaneously. The training samples can be collected by doing
experiments or by establishing an ideal model. We believe that
such a model is theoretically available and is helpful in training

and checking the fuzzy systems. We have demonstrated that
the proposed controller works quite well, even if the ideal
model is not so in concordance with the real inverse dynamics.
The feedback controller is also composed of a set of fuzzy
rules. The rules have a PD-like structure and their gains are
tuned on-line based on gradient method. The computational
complexity is greatly reduced compared with that of a self-
tuning controller. Various simulation results prove that the
proposed controller is effective.
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