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the proposed system and a conventional system. We could see that 
our system improved the system performance by 4 N 20% compared 
with the conventional method. 

The developed system was commercialized in 1992 by an industrial 
company, and this product has a good reputation in the market. In 
this study, the area-weight was determined by the fuzzy approach. In 
a further study we will apply the same approach to other variables. 
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Neural Network Based Fuzzy Identification and Its 
Application to Modeling and Control of Complex Systems 

Yaochu Jin, Jingping Jiang, and Jing Zhu 

Abstmct-This paper proposes a novel fuzzy identification approach 
based on an updated version of pi-sigma neural network. The proposed 
method has the following characteristics: 1) The consequence function 
of each filzzy rule ~1111 be a nonlinear fnnction, which makes it capable 
to deal with the nonlinear systems more efliciently. 2) Not only each 
parameter of the conseqnence Punetions but also the membership function 
of each fuzzy subset can be modiied easily on-line. In this way, the fuzzv 
identification algorithm is greatly shpli6ed and therefore is snitable for 
real-time applications. Simulation results show that the new method is 
effective in modeling and controlling of a large class of complex systems. 

I. INTRODUCTION 
Fuzzy model identification is developed based on the fuzzy set 

theory proposed by Zadeh [l] and has been widely investigated 
[2]-[5]. The main interest has been on building fuzzy relationship 
models that are expressed by a set of fuzzy linguistic propositions 
derived from the experience of the skilled operators or a group 
of observed input-output data. However, for some large complex 
systems, it is almost impossible to establish such a fuzzy relationship 
model due to the large amount of the fuzzy prepositions and the 
highly complicated multidimensional fuzzy relationship. 

Takagi and Sugeno [SI proposed a new type of fuzzy model that has 
been proved to be effective in overcoming some of these difficulties. 
Their fuzzy model consists of fuzzy implications whose consequences 
are described by crisp linear input-output relation functions. Another 
significance of their fuzzy model we think is that, since every 
of its consequence parameter is identified by certain algorithms 
such as the least square method and therefore, the fuzzy model 
established is more systematic and objective. Unfortunately, the 
identification procedure is quite complicated and is carried out off-line 
(although Sugeno and Tanaka [6] suggested a successive identification 
algorithm, it still has difficulties for real-time implementation.), which 
makes it incompetent to deal with time-varying systems. 

The theory of Artificial Neural Network (ANN) has been greatly 
developed in the recent years. Due to its strong nonlinear mapping 
and learning abilities, applications of ANN to control systems have 
been so successful that neurocontrol is no longer strange to those 
who work in the discipline of automatic control [7]. Mainly, there 
are two kinds of applications of neural networks to control systems, 
namely Neural-Network-Integrated Control (NNIC) and Neurocontrol 
or Neuromorphic Control (NC). By NNIC, we mean those control 
schemes that use neural networks to enhance the performances 
of some conventional control strategies, such as adaptive control, 
optimal control, internal model control and predictive control, as well 
as expert control and fuzzy control. NC, on the other hand, uses neural 
networks directly as the controller and no other conventional control 
means are involved. It is desirable to note that the marriage of neural 
networks with fuzzy set theory is showing special promise and is re- 
ceiving more and more attentions. Use of neural networks to perform 
the adjustment of fuzzy membership functions and modification of 
fuzzy rules makes it practical to design adaptive fuzzy models and 
self-organizing fuzzy controllers. 
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Fig. 1. Structure of the hybrid pi-sigma neural network. 

This paper furthers the work of Tagaki and Sugeno [5] on the 
basis of an updated version of pi-sigma neural network. The neu- 
ral network contains not only summing and product neurons, but 
also fuzzy neurons that perform minimum operation. To adjust the 
consequence parameters and the membership functions, the idea 
of error backpropagation is extended and hill-climbing searching 
technique is introduced. Through examples of short-term weather 
forecast, burden optimization, fuzzy control system design and dy- 
namic control of robot manipulators, we demonstrate that our scheme 
is free of the shortcomings of the existing fuzzy identification 
methods. 

11. TAKAGI AND SUGENOS FUZZY MODEL 
In this section, we briefly describe the fuzzy model suggested by 

Takagi and Sugeno [5] and provide some discussions. Consider a 
fuzzy system with K inputs and single output 

R’: If 2 1  is Ai and ... and Xk is A i ,  

where R‘ (i = 1 , 2 , .  . . , m) denotes the i-th implication, m is the 
number of the fuzzy implications of the fuzzy model, 2 1 , .  . . , Xk are 
the premise variables, Ai ( j  = 1 , 2 , .  . . , I C )  is the fuzzy subset whose 
membership function is continuous piecewise-polynomial function, 
yz is the consequence of the i-th implication, which is a nonlinear 
or linear function of the premises. Given an input (zy, . . . ,s i ) ,  the 
final output of the fuzzy model is expressed by 

m m 

where wz is the overall truth value of the premises of the i-th 
implication calculated as 

(3) 

In (3), PA; (z) is the membership function of the fuzzy subset A>, 
which is supposed to be continuous piecewise-polynomial function, 
often of convex type straight lines. 

The identification using input-output data consists of two parts: 
structure identification and parameter identification. The former de- 

cides which input variables affect the output, while the latter identifies 
the parameters in both the premises and consequences. 

The above described method of designing fuzzy models is superior 
to the heuristic one probably in that all of its fuzzy rules (including the 
parameters of the membership of each premise and the parameters 
of the consequences) are identified and consequently seems more 
accurate and objective. However, this method is unavailable for 
wider application because the identification is too complicated and 
no systematic procedure has been established. Difficulty also arises 
in obtaining enough input-output data for off-line identification, since 
it is often the case that no experiment is allowed in an industrial 
process. 

From the research history of the past decades, we believe that 
parameter identification cannot be effectively realized by the conven- 
tional fuzzy system methods. To cope this situation, it is necessary 
to develop a more sophisticated mathematical tool for fuzzy systems. 
One possible and perhaps the most prospective way is to combine the 
artificial network theory with fuzzy set theory. These hybrid systems 
seem to have the following features: 

1) Fuzzy sets are used to create a relevant perception perspective, 
which possesses very clear physical meanings. 

2) All the fuzzy rules are expressed by a group of weights of a 
neural network and can be adjusted in a more effective way. 

3) The nonlinear characteristic of the neural network endows 
the fuzzy model greater abilities to describe a given complex 
system. 

III. HYBRID PI-SIGMA NEURAL NETWORK 

A.  Architecture of the Hybrid Pi-Sigma Neural Network 

In order to deal with the fuzzy systems, the neural networks should 
contain not only summing and multiplying neurons, but also fuzzy 
neurons that are able to perform fundamental fuzzy operations such 
as the minimum or maximum operation. Therefore, we proposed a 
hybrid pi-sigma neural network as shown in Fig. 1. In Fig. 1, C 
denotes the summing neurons, ll denotes the product neurons and A 
represents the fuzzy neurons, which, in our case, perform minimum 
operation. Assume the consequent sub-network has n hidden neurons, 
then the output of the whole neural network is given by 

(4) 

where f(.) is a sigmoid type nonlinear function, z~ is the normalized 
value of zf. We will show later that the normalization of the premise 
variables fanned in the membership function helps to make the design 
simpler. Note that the membership grade p A ;  (21) is written as Aj (a)  
for short, which is a widely adopted simplification in fuzzy set theory. 
The truth value of the premise of each rule is determined by the 
minimum of the membership grades of all its premise variables, and 
will be updated indirectly by changing the form of the membership 
functions. The updating of the membership functions is of great 
necessity because in most cases, they are prescribed by heuristics 
and do not necessarily conform to the real world. 

This hybrid neural network has very clear physical meaning. 
Obviously, it is equivalent to the fuzzy system defined by (1)-(3). 
However, the membership function is of Gaussian type rather than 
continuous piecewise polynomial so that the neural network can learn 
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C 

Fig. 2. Illustration of a fuzzy neuron. 

more effectively 

Af(z1) = exp(-(q - ~ f ) ~ / b f ) ,  bf > 0 (7) 

where a; and bf are two parameters that describe the form of the 
function. In the conventional design, af and bf have to be carefully 
evaluated so that satisfying results can be obtained. But up to now, 
we still have no concrete rules to choose proper values for them. 
What we can do is to select some “best” values depending on either 
statistical data or past experiences. As a matter of fact, it is impossible 
to acquire best values for them beforehand because they are dependent 
on the distribution of the input data. In our case, this difficult situation 
is avoided. We just need to preset some initial values, which will 
automatically be adjusted to their optimal values when the on-line 
learning is implemented. 

B. Leaming Algorithm 
To adjust the consequence parameters and the parameters of the 

membership function, the error backpropagation algorithm should be 
slightly extended. Suppose the desired output of the pi-sigma network 
is Y d ,  which can be obtained from heuristics or other approaches, 
we form the error function as follows: 

(8) 
1 
2 E = -(Y - Y d ) 2  

According to the principle of error backpropagation, the generalized 
error of the final output node c is ( yd  - Y ) / c w Z .  Since the 
consequence y f  and the overall truth value of the premises w a  of 
the i-th implication are multiplied in the multiplication node II, the 
error can not be directly back propagated. However, if we think w* 
is the ‘weight’ connecting the consequence node C and the final 
output node E, the product node can be ‘eliminated’. In this way, 
the generalized error of the i-th consequence node C is obtained 
approximately as 

m 

s; = (Yd - Y ) w i / E w i .  
Z=l 

Similarly, the generalized error of each fuzzy node is 
m .._ 

s; = ( Y d  - Y ) y i /  1uz. 

(9) 

i=l 

Therefore, the consequence parameters are adjusted in the following 
form: 

/ k  \ 

Fig. 3. Membership function updating. At most 6 rules are involved in 
updating the membership function p p ~  (z) of premise 21. This blacken lines 
denote the selected node by the first searching algorithm. 

where 77 is the learning rate and other parameters are all defined as 
before. 

Now, we discuss the updating of the membership functions. For 
the sake of simplicity, we consider the fuzzy node that implements 
minimum operation as in Fig. 2. From Fig. 2, we have 

C = min(A, B). (14) 

If A = 0.8 and B = 0.9, then C = min (0.8, 0.9) = 0.8. Suppose 
the desired output of C is 0, and hence the error e = -0.8. In order 
to back propagate this error, which input node is to blame? Although 
the value of the error e in this case is determined by node A, this does 
not necessarily mean that the error is caused by node A. It may be the 
case that the true value of node B is 0 and the error is fully caused 
by node B. To cope this situation, we introduce the hill-climbing 
search method, which is a counterpart of the gradient method and 
does not require the differentiability of the cost function. Thus, if the 
error of the node C is e, we update node A and B simultaneously 
and then compare these two alternatives to see which modification is 
better. For example, if the error before modification is -0.8, and after 
updating node A, the new error is -0.4 while after updating node B, 
the error becomes -0.2, then we think that updating node B is better 
than updating node A. Consequently, node B is actually modified. 

There is another problem remained to solve. In real applications, if 
the fuzzy system has m fuzzy implications, not every premise variable 
is necessarily divided into m subspaces. Without loss of generality, 
we assume that there exists a fuzzy model whose two input variables 
are divided into six subspaces, namely PL, PM, PS, NS, NM, NL, 
where ‘P’ means positive, ‘N’ stands for negative and ‘L’, ‘M’, ‘S’ 
denotes large, medium and small respectively. Thus the fuzzy model 
has 36 fuzzy rules: 

R1: If x1 is PL and x2 is PL, then y1 = g1(x1,x2) 

R2: If x1 is PL and x2 is PM, then y 2  = g2(x1,x2) 

R36: If x1 is NL and x2 is NL, then y36 = g36(el,  22). 

Therefore, there are at most six rules (not always six because of 
the hill-climbing search algorithm) that may be used to update some 
certain membership function(see Fig. 3). Two possible solutions are at 
hand. The first is, rather directly, to use the hill-climbing technique for 
the second time to decide which rule should be adopted for updating. 
This makes the algorithm a little complicated. The other method is 
to choose a rule randomly among, those which have been selected 
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q 

-5.28 

5.18 

10.23 

4.21 

-2.46 

7.32 

-10.81 

3.85 

2.74 

6.00 

0.65 

-11.83 

-2.30 

-14.68 

-1.36 

TABLE I 
HISTORICAL DATA FOR TRAINING 

Rainfall 

(mm) 

283 

647 

731 

561 

467 

399 

315 

521 

472 

536 

385 

259 

657 

348 

644 

year I x1 

1952 

1953 

1954 

1955 

1956 

1957 

1958 

1959 

1960 

1961 

1962 

1963 

1964 

1965 

1966 

0.73 

-2.08 

-5.53 

-3.31 

0.53 

2.33 

6.32 

-2.35 

6.95 

6.64 

0.92 

2.98 

6.85 

0.46 

-2.31 

year I I x2 
I I 

Rainfall 

(mm) 

431 

179 

61 5 

433 

401 

206 

639 

41 8 

570 

41 5 

796 

by the first searching algorithm. It has proved through practice that 
either alternative will do. Finally, the parameters of the membership 
functions are modified in the following form: 

(15) 
(16) 

where p is the learning rate and the value of I is decided by the 
hill-climbing search algorithm. 

Up to now, we have developed a new approach to identify a fuzzy 
model via the theory of artificial neural networks. We argue that 
the proposed method is quite general because almost no prerequisite 
is posed. Neither do we need to specify membership functions for 
every premise, nor do we have to spend much time for premise and 
consequence structure identifications. In addition, the consequence 
parameters and the parameters of each membership function are 
adjusted on-line. In this situation, the consequence parameters are 
randomly initialized and the fuzzy subspaces are coarsely divided 
before operation. In Section IV, we will show three examples of 
fuzzy modeling. In Section V, we applied the proposed algorithm to 
the dynamic control of a rigid robot manipulator. All the examples 
demonstrate that our algorithm is effective in modeling and control 
of a wide class of complex systems. 

Aa; = pzrS;2(zl - a;) /b;  
Ab; = pziS;(zr - a;)’/(b;)’ 

IV. FUZZY MODELING APPLICATIONS 
In the following examples, all the premises are divided into 6 fuzzy 

subspaces, that is PL, PM, PS, NS, NM and NL, whose membership 
functions are all initially taken as 

z > l  { :;p(-(z - 1)’/0.3), 0 < z 5 1 P P L ( Z )  = 

~ P M ( Z )  = exp(-(z - 0.5)’/0.125), 

pps(z) = exp(-z2/0.125), z 2 0 
PNL(Z)  = P P L ( - ~ ) ,  ~ N M ( T )  = P P M ( - ~ )  

pNS(z) = p P S ( - Z )  (17) 

z > 0 

For simplicity, all the consequence functions take the linear form. 

......... .- ............-.. ......... .......... . . .  . . .  

. . .  . . .  : : :  

: . : : : : : : :  
. . . . . . . . .  . . . . . . . . .  . . . . . . . . .  . . . .  . . . .  . . . .  . . . . . . . . .  . . .  

1951 lQ641857 lao1ocEI 19ee-la72 lQ75 lm 1m 
Y E A R  

Fig. 4. Results of rainfall forecast. 

A. Short-Temz Rainfall Forecast 

From the historical data during the year of 1952 and 1977 recorded 
by Tianjin meteorological observatory [9], we select the westem 
Pacific Ocean temperature anomaly (21) from Jan. the year before 
to Feb. of the next year and the Eurasia 500 mb height anomaly 
(22) as two input variables of the rainfall forecast fuzzy model. The 
processed data and the amount of the rainfall are listed in Table I. 
According to the assumed division of the fuzzy subspaces of each 
premise, we have the following 36 fuzzy rules: 

R1: If 2 1  is P L  and x2 is PL, 

RZ: If x1 is PL and x2 is PM, 
then yl = P; + pix1 + ~ 2 x 2  ; 

then y2 = P,” + P:x1+ P;XZ ; 

R36: If x1 is NL and xz is NL, 
then y36 = + P,”‘z~ + P,”‘Z~. 

The overall output of the fuzzy model is expressed by 
m 

Y = p y z  /-&. (18) 

Training the hybrid neural network with twenty-six group of data 
from the year of 1952 to 1977 given in Table I for about lo00 times, 
the neural network converges and the learning process completes. 
First, we verify the rainfall learned by the trained fuzzy model. Except 
for the year of 1977, which is an over-raining year of Tianjin, the 
outputs of the fuzzy model are quite consistent with the real values 
(see Fig. 4). Then we use the fuzzy model to predict the rainfall from 
the year of 1978 to 1981. The results are rather satisfying (again see 
Fig. 4). The membership functions of the two premises before and 
after learning are shown in Fig. 5. From Fig. 5, we show that the 
distribution of the fuzzy membership functions is more agreeable to 
the distribution of the training data. 

*=l *=1 

B. Burden Optimization Model 

Suppose some material is composed of three components A, B 
and C, where component A and component B forms 100 percent, C 
is an extra adding component. Table I1 gives 14 experimental burden 
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-1 45 0 45 1 
(b) 

Fig. 5. Membership modification through learning. (a) Premise 2 1 ;  (b) 
premise 22. 

TABLE II 
DIFFERENT FORMULATIONS AND THEIR PERFORMANCE INDICES 

A(%) B(%) C(%) Index A(%) B(%) C(%) Index 
100 0 0 1.23 85 15 7 6.13 
85 15 0 1.27 85 15 9 8.72 
80 20 0 1.32 85 15 11 9.97 
100 0 5 1.58 80 20 11 6.01 
80 20 5 4.12 81 19 9 5.61 
90 10 5 4.06 100 0 9 7.30 
85 15 3 3.20 100 0 11 8.51 

methods and their performance indices. We are asked to acquire the 
relationship between different burden methods and their performance 
indices and the optimal burden point. Using the given 14 groups of 
data to train the neural network for about 12000 times, the testing 
mean error is less than 1%. Fig. 6(a) shows the given data and 
Fig. 6(b) is the associated data. 

0) 
Fig. 6. 

C. Fuzzy Control System 
In some cases, we only have a set of input-output data without 

knowing anything of the internal knowledge of a system (sometimes 
we call it black box). In order to control such systems properly, we 
have to obtain the characteristic relationship between the inputs and 
outputs of the system. lbenty sets of training data are listed in the 
left side of Table III. The concerned system has three input variables 
(ZI,ZZ,Z~) and one output variable (y) and y* denotes the desired 
output. In the right side of Table III, twenty groups of testing data 
are listed. Despite that there eleven input-output pattems are new to 
the fuzzy model, the output of the fuzzy model is acceptable. 

Burden optimization. (a) Given data; (b) associated data. 

v. DYNAMIC CONTROL OF RIGID ROBOT MANIPULATORS 
One problem we meet when we apply the fuzzy model to system 

control is that we have to identify large number of consequence pa- 
rameters. For example, for a rigid robot with N-degree of freedoms, 
there are 3N input variables (link position, velocity and acceleration), 
and if each input is divided into 6 fuzzy subspaces, there will be 63N 
fuzzy rules. Since every rule consists of N x (3N + 1) consequence 
parameters (the linear case), we have to identify N ( 3 N  + 1)63N 
parameters. If N = 6, the number is about 1.16 x which 
is very huge and makes it impossible for real-time implementation. 
Therefore, when we apply the fuzzy model to robot control, we first 
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995 

TABLE ID 
TRAINING DATA AND ASSOCIATED DATA OF A FUZZY CONTROL SYSTEM 

" 
9 

4 
* -  

Fig. 7. 

have to decouple the robot dynamics. After properly selecting the 
decoupled dynamical model, the fuzzy controller for each link has 
only 2 input variables. In this case, we need only N x  6' fuzzy 
rules, each consisting 3 consequence parameters. When N = 6, the 
number reduces to 648. 

Structure of the fuzzy controller for robot system. 

A. Decoupling of the Robot Dynamics 

expressed by 
Consider an N-degree-of-freedom rigid robot, its dynamics is 

(19) 

where T is N x  1 torque vector, H ( q )  is N x N inertia matrix, 
M ( q ,  q )  is N x 1 Coriolis and centrifugal force vector, G(q) is N x 
1 gravity vector and q, q and q is N x  1 angular, velocity and 
acceleration vector respectively. k t  zZ = qz ,  Z N + ~  = 4% (i = 
1,2 , .  . . , N), then (19) becomes 

X = A ( X )  + B ( X ) U  (20) 

Y = C ( X )  (21) 

7 = H(q)i + M ( q ,  4) + G ( q )  

where X = [ X I  X #  = [XI ,..., ZN ZN+I ,..., Z Z N ] ~ ,  U = 
[ T l ,  ..., T " I T ,  C ( X )  = x1, 

Define the following nonlinear operator [ 101: 

N ; C , ( X )  = [ a / a X ( N ~ - ' ) C , ( x ) ] A ( x ) ,  
j = 1 , 2 , .  . . , N - 1 (22) 

N i C , ( X )  = C , ( X )  (23) 

where C , ( X )  is i-th row of C ( X ) .  Define the relative degree of the 
system 

d, = min{j: [ a / a X ( N ; - l ) C , ( X ) ] B ( X )  # 0,  
j = 1,2, ..., N }  

(24) 

(b) 
Fig. 8. 
1; (b) link 2. 

then we have the following control which decouples the robot 
dynamics 

(25) 

where V is the new control vector of the decoupled linear system, and 

F ( X )  = - ( D * ) - ' ( X ) ( F ; ( X )  + F ; ( X ) )  (26) 

Convergence of the tracking error vs. time and iterations. (a) Link 

U = F ( X )  + G ( X ) V  

G ( X )  = - ( D * ) - l ( X ) A  (27) 

F;, (X)  = N $ C , ( X )  (29) 

F ; , ( x )  = a k , z N 2 c % ( x )  (30) 

D: ( X )  = [a/ax ( N? ) c, ( X  )] B ( X  ) (28) 

d,-1 

k=l 
A = diag[X1, . . . , A N ]  (31) 

where D : ( X ) , F T t ( X )  and F;,(X) is the ith row of matrix 
D * ( X ) ,  F ; ( X )  and F ; ( X )  respectively, a k , l  are some constants 
to be determined. For the robot system given in (19), since 



(C) (d) 

Fig. 9. Distribution of the consequence parameters. (a) PO, (b) PI of link 1. (c) P2 of Link 1 and (d) Po of link 2. 

[ a / a X ( N i ) C , ( X ) ] B ( X )  = 0 and [ a / a X ( N i ) C ; ( X ) ] B ( X )  # 0, 
then d, = 2 (i = 1,. . . , N). Then we have the following decoupled 
model: 

Obviously, the decoupled subsystem for each link is a linear system, 
which has two inputs and one outputs. Parameter a and X should be 
properly chosen so that the linear subsystem is stable. 

B. Simulation Study of Adaptive Fuzzy Control 
fo r  a Two-Degree-of-Freedom Robot 

The decoupled model for each link is set by 
Without loss of generality, we study with a two-link simple robot. 

O . l &  + qz = v, (i = 1,2) .  (33) 

Choose xi  = qz,  x i  = q," - qz and yz = V ,  (i = 1,2),  where z;, z; 
are two input variables of the fuzzy controller and yz is the output 
variable. When we train the fuzzy model on-line, the desired output of 
the neural network is calculated from (33). Fig. 7 shows the structure 
of the developed control system. The training procedure is given in 
Fig. 8. It demonstrates that after 10 times of training, the performance 
of the system is satisfying. Fig. 9 presents the distribution of each 
consequence parameter in the fuzzy space. In the simulation, we 
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( f )  

Fig. 9. (Continued) Distribution of the consequence parameters. (e) v PI 
and (0 PZ of link 2. 

assume the real robot model is (ml ,  m 2 , 1 1 , 1 2 )  = (2.0, 1.0, 0.223, 
0.2), where mz and 2, are the matter and length of each link. Suppose 
there exists a matter error of 50% and 40% for each link respectively 
and the desired trajectory for link 1 and link 2 is taken respectively as 

q f ( t )  = exp(0-5t)(rad) d ( t )  = 1.5 exp(l.5t)(rad) (34) 

4 1 ( 0 )  = l . l ( r a d )  42(0)  = 1*3(rad). (35) 

VI. CONCLUSION 
In this paper, we have extended the fuzzy identification algorithm 

proposed in [5]. The new algorithm is based on a hybrid neural 
network structure. We believe that our method makes it easier to 

design a fuzzy model for a complex system. The performances of the 
novel fuzzy model are also improved. 

However, as the number of the input variable and the num- 
ber of fuzzy subspaces increase, the consequence parameters to 
identify increase rapidly, which makes the identification much time- 
consuming. Therefore, it is desirable to develop a more suitable 
form of consequence function so as to decrease the number of the 
consequence parameters without deteriorating the performance of the 
system. 
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