Solving Three-objective Optimization Problems
Using Evolutionary Dynamic Weighted
Aggregation: Results and Analysis

Abstract. In this paper, evolutionary dynamic weighted aggregation
methods are generalized to deal with three-objective optimization prob-
lems. Simulation results from two test problems show that the perfor-
mance is quite satisfying. To take a closer look at the characteristics
of the Pareto-optimal solutions in the parameter space, piecewise lin-
ear models are used to approximate the definition function in the pa-
rameter space that defines a Pareto-optimal front or the boundary of a
Pareto-optimal surface. It is shown that such analyses are very helpful
for recovering the true Pareto front.

1 Introduction

Evolutionary multiobjective optimization using the linear weighted aggregation
of the objectives has been investigated in the recent years. While most weighted
aggregation based methods can get only one Pareto-optimal solution by prede-
termining the weights using a priori knowledge or simply by trial-and-error, a
few attempts have been made to obtain a set of Pareto-optimal solutions in one
single run using the weighted aggregation method with the help of evolutionary
optimization algorithms. The earliest effort in this direction was reported in [1].
In this approach, the weights are encoded in the chromosome together with the
design parameters. Since no search direction exists for the weights in the evolu-
tionary optimization, the weights drift randomly during optimization. A method
that explicitly uses random weights during selection for genetic algorithms has
been suggested in [2]:

w; = random, /(random; + - - - + random,,),i = 1,-- -, n, (1)

where random; is a non-negative real number and n is the number of objectives. If
N pairs of parents are selected for generating offspring, N different sets of weights
will be specified. A problem in this method is that N sets of weights may not be
uniformly distributed and therefore, the search direction of the individuals may
overlap. To address this problem, the algorithm has been extended [3], which
is known as the cellular multiobjective genetic algorithm (C-MOGA). In the C-
MOGA, the weight space is divided uniformly into a certain number of cells and



an individual is generated for each cell, whose weights are designated by the cell.
Thus, each individual has a unique deterministic weight combination. It should
be noticed that with the increase of the objective number, the population size
increases exponentially.

A seemingly similar but different approach to multiobjective optimization
using random weights has been proposed in [4]. The basic idea is that each
individual in the population should have a separate search direction so that the
advantages of population-based optimization can be exploited. Consider a two-
objective optimization problem and a population of size A, then the weights for
the two objectives are determined as follows:

wi(t) = random(\)/\, wh(t) = 1 —wi(t), (2)

where random(\) generates uniformly distributed random weights between 0 and
A, t is the generation number. This way of weight generation has two features.
First, in each generation, there are A search directions, which are distributed
uniformly but randomly in the fitness space. Second, the search direction of each
individual changes in each generation. Compared to the C-MOGA algorithm, it
has the merit that the population size does not increase exponentially with
the number of the objective functions, although for two-objective optimization
problems, it is very similar to the C-MOGA. One weakness of this method is
that multiple search directions are achieved at the cost of the search efficiency.
As shown in [4], the performance of the method using random weights degrades
seriously, when the dimensionality of the design parameter space becomes high.
This method was originally termed the random weighted aggregation (RWA),
however, to distinguish this method from the one used in [2], we now call it the
randomly assigned weighted aggregation (RAWA) method. A common drawback
of C-MOGA and the RAWA is that they suffer from the fact that the uniform
distribution of the weights does not necessarily result in uniformly distributed
Pareto solutions.

A more effective weighted aggregation based method has also been suggested
in [4,5]. The method simply changes the weights gradually between 0 and 1
generation by generation. Once they reach an arbitrary point on the Pareto-
front, the individuals will move along the Pareto front as the weights change.
This has been termed the dynamic weighted aggregation (DWA) method [5]. Tt
has been shown on a number of test functions as well as on real-world applications
that the method is able to achieve a set of Pareto-optimal solutions successfully
for both convex and concave Pareto fronts.

A special case of the DWA method is the bang-bang weighted aggregation
(BWA), where the weights are switched between 0 and 1. Empirical studies have
shown that the BWA method exhibits very good performance if the Pareto front
is concave.

Theoretical analyses of the above methods reveal that the success of the

weighted aggregation based methods can largely be attributed to the following
facts:



— The change of the weights is equivalent to the rotation of the Pareto front.
In this case, all Pareto solutions, whether they are located in the convex or
concave region of the Pareto front, are dynamically reachable. In contrast,
classical analyses of the weighted aggregation method usually only consider
the static stability of the Pareto solutions [6,7]. It is easy to conceive that
a dynamically reachable (thus capturable) Pareto-optimal solution is not
necessarily stable.

— A majority of the multiobjective optimization problems are globally convex,
which means that most Pareto-optimal solutions are concentrated in a small
fraction of the parameter space. Furthermore, the solutions in the neigh-
borhood in the fitness space are also in the neighborhood in the parameter
space, and vice versa. This property is also known as the connectedness. In
this paper, we will discuss some additional properties of the Pareto-optimal
solutions in the parameter space in Section 4.

— The locally causal search property of the evolution strategies. Once the pop-
ulation has reached any point on the Pareto front, the search algorithm can
be regarded as “converged”. Thus, local search ability is very important for
the algorithms to smoothly “scan” the Pareto front point by point. The
resolution of the scanning is determined by the speed of the weight change.

In this paper, the weighted aggregation method is employed to solve three-
objective optimization problems. Additionally, approximation of the defining
function of the Pareto front in parameter space is studied to facilitate the analysis
of the true Pareto front in fitness space.

2 Weighted Aggregations for Three-objective
Optimization

The three weighted aggregation methods can easily be extended to three-
objective problems. For the RAWA  the weights can be generated in the following
way:

wi(t) = random(%\)/)\, (3)
w’z(t) =(1.0— wi(t))rall_dom()\)/)\, (4)
ws(t) = 1.0 — wi(t) — wy(t), (5)

where, random(\) generates a uniformly distributed random number between 0
and A\, 7 =1, ..., A\, A is the population size, and ¢ is the generation index. Actually,
the population size specifies the resolution in the search space. For example, if
the population size A = 11, then the weight space will be divided into 11 x 11
search directions and in each generation, 11 of the 121 search directions will be
assigned randomly to the current individuals. In contrast, if the same resolution
is used for the C-MOGA algorithm, the population size will be 121.

The dynamic weighted aggregation method can be extended to three-
objective problems in a straightforward way. An example of the weight change
is as follows:
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Fig. 1. Possible change of weights of BWA for three-objective optimization.

begin
t1=0; t2=0; t=t1+t2;
for t1=0 to F/2
wl(t) = |sin(2*PI*t1/F)|;
for t2=0 to F/2
w2(t) =(1.0-wi(t)) Isin(2xpi*t2/F)|;
w3(t) = 1.0-wi(t)-w2(t);
endf;
endf;
end

Other change modes can of course also be adopted. In the simulation studies,
a linear change of the weights is used, refer to Fig. 6.

It is easy to extend the BWA for three-objective optimization. Fig. 1 shows an
example of a weight change, where T is a frequency parameter that determines
the speed of the change.

3 Simulation Results

The following two test functions have been used in the simulation study [8]. The
first test function can be described as follows:

fi = 21+ (22-1)%  fo = ai+(z2+1)*+1, f3 = (v1—-1)°+23+2, (6)

where —2 < 1, z9 < 2. The Pareto solutions of the test function form a convex
Pareto surface. The second test function is:

f1 = 0.5(22 4 22) + sin(x? + 22), (7)
(31’1—21’2+4>2 (1'1—1’2+1)2
= ].
1
- 11 —x? — 23), 9
f3 x:{—i—x%—i—l exp( T 1’2) ( )

where —3 < x1, 22 < 3. The Pareto front of this test function consists of separate
pieces of curves, which are hard to distinguish without exact analyses of the true
definition function. More details are provided in the next section.

A standard (15,100)-ES with intermediate recombination [9] has been em-
ployed for evolutionary optimization. The step-sizes are randomly initialized
between 0.1 and 1.0. During optimization, the step-sizes are re-initialized if they



are smaller than a prescribed value. This is particularly important when em-
ploying the BWA for solving concave Pareto-optimal problems. The reason is
that when the population has converged to a stable minimum, the step-sizes will
converge to zero very quickly. To assure that the population is able to move from
one stable minimum to another after the weights are switched, the convergence
of the step-sizes to zero must be avoided. Thus, a relatively large lower bound
should be used to prevent the ES from getting trapped in one stable minimum.
In this paper, the BWA is employed to solve the second test function. In the
simulations, the lower bounds were set to 0.0001 for RAWA and DWA and to
0.01 for BWA. The optimization was run for 500 generations. The RAWA has

Fig. 2. Results for test function 1 using RAWA. (a) Parameter space; (b) fitness space.

been employed first to solve the two test functions. As expected, the results are
not satisfactory. For the first test function, part of the Pareto set is missing as
can be seen in Fig. 2. This also happens for the second test function, refer to
Fig. 3.

The results obtained for test function 2 using DWA are provided in Fig. 4.
The distributions of the solutions in the parameter space as well as in the fitness
space are given. The performance of the algorithms is difficult to evaluate from
the three-dimensional Pareto surface. Therefore, the three projections of the
Pareto surface onto the corresponding two-dimensional planes are also provided
in Fig. 5.

The change of the weights are shown in Fig. 6. In the first 20 generations,
wy and we are fixed to 0 and ws is set to 1. From the 21 generation, the weights
begin to change. In the first phase, wy increases from 0 to 1 by 0.05 each time.
Once w; is increased, it is fixed temporarily and ws changes from 0 to 1.0 — wy
and again from 1 — w; to 0, each time by 0.05 in one generation. When this
completes, w; increases again by 0.05 and the process repeats until w; reaches
1. The weights are fixed for 20 generations for w; = 1.0 and ws = 0, w3 = 0. In
the second phase, wy decrease from 1 to 0 and wo changes in a similar way as in
the first phase. In this way, the Pareto surface is “scanned”. The optimization
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Fig. 3. Results for test function 2 using RAWA. (a) Parameter space; (b) fitness space.
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Fig. 5. Two dimensional projections of Fig. 4(b): (a) fi-f2 plane, (b) fo-fs plane and
(¢) fs-f1 plane.
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results for the first test function using the BWA method are illustrated in Fig. 7.
The weights have been changed as shown in Fig. 1 and T has been set to 50.
It can be seen that the Pareto-optimal solutions are composed of four pieces of
linear curves and a separate isolated point in the parameter space, while the
three-dimensional Pareto front appears to be one continuous curve. However, a
closer look at the solutions reveals that this impression is wrong. This will be
discussed further in the next section.
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Fig. 7. Results for test function 1 using BWA. (a) Parameter space; (b) fitness space.

Through the two three-objective test functions, we show that the weighted
aggregation methods are capable of solving three-objective optimization prob-
lems.

4 Approximation of Definition Functions

One of the important aspects of global convexity is that the Pareto-optimal
solutions are concentrated in a very small region of the parameter space. In
addition, the distribution of the solutions in the parameter space often shows
high regularity. Actually, it is found that in many cases the Pareto solutions in



parameters space can be defined by piecewise linear functions, which we have
termed definition functions.

In this section, we will analyse the properties of the definition function and
the relation between the order of the definition function(s) and the function(s)
describing the Pareto surface in fitness space for the two three-objective test
functions. We will start by formulating the following two conjectures:

— If the Pareto solutions form a curve in the fitness space, then the definition
function is also a curve. If the Pareto solutions form a surface in the fitness
space, then the definition function is also a surface.

— The order of the definition function in the parameter space is equal to or
lower than that of the function describing the Pareto front. Thus, if the
Pareto front consists of lower order curves, the solutions in the parameter
space can most probably be described by piecewise linear functions.

If the above conjectures hold for an unknown optimization task, it will be very
helpful in getting the true Pareto front from the approximated solutions ob-
tained using multiobjective optimization algorithms. In the following, approxi-
mate models for the definition function will be constructed for both test problems
on the basis of the previous conjectures. It will be shown that in both cases, the
accuracy of the solutions will be improved significantly. Furthermore, missing
solutions can be found through such analysis.

4.1 Test Function 1

The regularity of the distribution of the solutions in the parameter space can
easily be observed. We find that the boundary of the solution region can be
defined by the following three lines:

o = x1 — 1.0, ro = —x1 + 1.0, r, = 0, (10)
O§x1§17 O§x1§17 _1<$2§1

Using these linear curves, it is straightforward to get the boundary of the true
Pareto surface, as shown in Fig. 8, where the approximated solutions are also
provided.

In this way, it is easy to get rid of the solutions that are not Pareto-optimal.
Meanwhile, it is interesting to find out that the boundary of the region in the
parameter space corresponds nicely to the boundary of the Pareto surface.

4.2 Test Function 2

From the distribution of the obtained solutions in the parameter space, as found
in [10-12], the definition function of this test problem consists of more than
one linear section plus a separate point, while the Pareto front appears to be a
continuous curve (albeit it can be seen in [11], that the Pareto front is composed
of two disconnected pieces, however, one piece of the Pareto optimal section is
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Fig. 9. (a) Distribution of the solutions and the approximation in the parameter space
and (b) Pareto front generated by line section 1.

missing). The four sections together with their approximation shown in Fig. 9(a)
can be described by:

S1: 5 = 0.001 — 0.6221, —0.95 < 21 < 0, (
S2: w9 = 1.94 + 1472, —1.2<2; <—0.95, (12
S3: w9 =1.944 14721, —3<x1<—1.95, (
S4: 0 = 30.8 4+ 11.1921, -3 < x1 < —2.89. (

Now we try to reproduce the Pareto front using the approximate definition
functions S1-S4. The Pareto front generated by line section 1 is shown in Fig. 9(b)
and the two sections of the Pareto front generated by line sections 2 and 3 are
illustrated in Fig. 11(a)-(c).

If we take a closer look at the solutions reconstructed from the approximate
definition functions, we find out that the Pareto front has much richer features
than what has been obtained in existing work [11, 10, 12]. The Pareto solutions
generated by line section 2 are so close to those generated by line section 3 that
it is difficult to distinguish them without zooming in.



Fig. 10. The Pareto front re-
constructed from the approxi-
mate models of the definition o
function.
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The solutions generated by line section 4 are shown in Fig. 11(d)-(f). To get
a better idea of the curve, it is shown together with the solutions generated by
line section 2 and 3. It should be pointed out that in the f3-f; projection, there
is an overlap of the Pareto front (between point A and B).

Finally, the complete Pareto front reconstructed from the approximate def-
inition function in the parameter space is presented in Fig. 10. Compared to
the results shown in Fig. 7(b), it can be seen that the Pareto-optimal solutions
generated by line section 4 have neither been found by the BWA optimization al-
gorithm nor by previously published works. Additionally, due to the complexity
of the Pareto front, the omission of parts would not have been detected without
the approximation of the definition functions on the basis of the two conjectures.

5 Discussions and Conclusions

The main purpose of this paper is twofold: first, to demonstrate the successful
extension of the weighted aggregation based approaches to three-objective prob-
lems and second, to show that the distribution of the Pareto-optimal set exhibits
surprising regularity and simplicity in the parameter space. This property could
be more interesting and helpful for the identification of the complete Pareto front
than global convexity. By taking advantage of such regularities, it is possible to
build simple models from the obtained Pareto-optimal solutions for the approx-
imation of the definition function. Such an approximate model can be of great
significance in the following aspects.

— It allows to get more accurate, more complete Pareto solutions from the
approximate solutions as shown in Section 4.

— It alleviates many difficulties in multiobjective optimization. If the whole
Pareto front can be reconstructed from a few Pareto solutions, then many
requirements on the optimizer can be alleviated, e.g., a uniform distribution
is no more important in approximating Pareto-optimal solutions.

In the design optimization and operations research communities, research has
been reported to approximate the Pareto front [13]. However, the final target



of optimization is not to get the Pareto front itself, but the Pareto-optimal set.
Besides, it has been argued that the definition function in the parameter space is
usually of lower complexity than the Pareto front. Of course, the approximation
becomes harder when the dimension increases. Nevertheless, if a lower order
polynomial is able to represent the definition function, the approximation is still
practical.

The result on the approximation of the definition function described in this

paper is still preliminary. Further work should be carried out to check the con-
jectures on multiobjective optimization problems with a higher design space.
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Fig. 11. Pieces of Pareto front generated by line section 2 and 3: (a) fi-f2, (b) fo-fs
and (c) fs-fi. Pieces of Pareto front generated by line section4 together with those
generated by line sections 2 and 3: (d) fi-f2, (e) fo-f3 and (f) fs3-f1.



