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Abstract

Identification of fuzzy systems with artificial neural networks is discussed in this chapter. By
use of an updated version of pi-sigma neural network, both premise and consequent parameters
of the fuzzy system can be efficiently identified on-line or off-line. Learning algorithms for both
Gaussian and triangular forms of membership functions are presented. The consequent part of
the fuzzy rules is represented by a sub-network, which enables the algorithm applicable to high
order Takagi-Sugeno fuzzy systems. Some measures are taken to preserve the interpretability of the
fuzzy system in the course of learning. The proposed method is applied to the nonlinear decoupling

control of robot manipulators and satisfactory simulation results are obtained.
I. Introduction

Two basic forms of fuzzy rules, namely, Mamdani fuzzy rules and Takagi-Sugeno fuzzy rules,
have been developed to date. The main difference between these two types of fuzzy rules lies in
the fact that the consequent part of the Takagi-Sugeno fuzzy rules is normally a concrete linear
function of input variables instead of some fuzzy linguistic variables. Generally speaking, Takagi-
Sugeno fuzzy rule systems are more flexible and thus have stronger modeling capability to solve

some complex problems. Theoretically, fuzzy rules can be built based either on expert knowledge
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or on a group of observed data. However, it is very difficult, if not impossible, for human beings to
establish an acceptable fuzzy rule system when the input dimension of the system becomes high.
Therefore, building fuzzy rule systems on the basis of collected data is becoming more and more
important.

We limit our attention to identification of Takagi-Sugeno fuzzy rule systems in this chapter.
It is noticed that identification methods for such fuzzy systems have been proposed by Takagi and
Sugeno[1-2]. The algorithms are quite complicated and are mainly suitable for fuzzy rules with
piece-wise linear fuzzy membership functions and linear consequents. Moreover, their algorithms
have difficulties in real-time implementation, which has limited its application seriously.

In the recent years, methodologies in artificial neural networks, fuzzy systems and evolution-
ary computation have been successfully combined and new techniques called soft computing or
computational intelligence have been developed. These techniques are attracting more and more
attention in several research fields because they are able to tolerate wide range of uncertainty. Use
of neural networks to performe the adjustment of membership functions and modification of the
consequent of fuzzy rules makes it practical to design adaptive fuzzy models and self-organizing
fuzzy control. Different neural networks, such as backpropagation networks[3], RBF neural net-
works[4], hybrid pi-sigma networks[5], B-spline networks[6] and neural-like structure[7], have been
applied to adaptation of fuzzy membership functions and consequent parameters.

With all these successes, it is also necessary to point out that some important features of fuzzy
systems have been lost. One common problem for most neurofuzzy algorithms is that the inter-
pretability of fuzzy systems is deteriorated. After adaptation, either the distinguishability among
the fuzzy subsets in a fuzzy partitioning is blurred, or the fuzzy partitionings of the input space
are incomplete. In fact, most neurofuzzy schemes have failed to pay attention to preserve the rule
structure of the fuzzy systems in the course of adaptation. This problem has been alleviated in

[6] by introducing the hill-climbing method. Further discussions on the interpretability of fuzzy
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systems, including the completeness and consistency considerations, can be found in [8][9].
This chapter is an extension of the work in [5]. A systematic approach to identification of
the Takagi-Sugeno fuzzy systems is described. The algorithm has been applied to a wide range of

modeling and control problems and inspiring results have been achieved.
II. Takagi and Sugeno’s Fuzzy Model

Takagi and Sugeno[1-2] proposed a new fuzzy model by replacing the linguistic variables in
the THEN-part of the fuzzy rules with a crisp linear function of the input variables. Since a
multi-input multi-output(MIMO) fuzzy system can always be separated into a group of multi-
input single-output (MISO) systems, we discuss here only the MISO fuzzy systems without the
loss of generality. Given an MISO system with n inputs, the Takagi-Sugeno fuzzy rules have the

following form:
R;: If 2, is A} and ... and z,, is A% , then y' = p{ +piz1 + ... + plz, (1)

where R;(i = 1,2, ..., N) denotes the i-th rule, z;(j = 1, ...,n) are the premise variables, A; are the
fuzzy subsets defined by corresponding piecewise linear membership functions such as triangle or
trapezoid, y; is the consequent of the i-th rule. According to Takagi and Sugeno, the final output

of the fuzzy system can be written in the following form:
y= '_N ! (2)

where w' is calculated by

wt = 6y Ai(e) 3)

where, t represents the t-norm operator. Currently, a number of fuzzy t-norms, as well as some
extended forms[10] have been proposed. Discussions on some widely used ¢-norms are given in
[11-12] among others. In this work, the most widely used minimum operator is considered.

If some pairs of input and output data are available, the parameters in THEN-part of the rules
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can be estimated using the least square method. However, estimation of the parameters of the
membership functions are a little complicated, even if the membership functions are supposed to
be piecewise linear[1-2].

The Takagi-Sugeno fuzzy model is believed to be more flexible than the Mamdani fuzzy model
and has found wider application in the recent years. Nevertheless, two general shortcomings still
exist. First, identification of the fuzzy system is not trivial and therefore it is hard to apply the
fuzzy system to real-time systems. Second, not only the membership functions are limited to
piecewise functions, but the consequent part is also assumed to be linear. This problem remains
unsolved until neural networks are combined systematically with fuzzy systems and the so-called
neurofuzzy system theory appears. Such hybrid systems are preferred because they possess the
main features of both fuzzy and neural systems. That is to say, they have clear physical meanings
and easy to interpret like conventional fuzzy systems, on the other hand, they have good learning
ability and nonlinear mapping capacity. Despite that, special attention should be paid in the course

of learning so that both of the merits could be preserved.
IT1. Neural Network Based Identification of Fuzzy Systems

A. Hybrid Neural Networks

Most researchers use multiplication as t-norm so that the conventional multiple layered per-
ceptions or RBF neural networks can be directly implemented. In fact, the Gaussian based RBF
neural networks with some minor conditions are shown to be mathematically equivalent to fuzzy
systems. One condition is that the multiplication operator should be used as the fuzzy t-norm. In
our work, however, minimum operator is kept. To this end, the neural network used to identify the
fuzzy system should contain not only summing and multiplication neurons, but also fuzzy neurons
that are able to perform fundamental fuzzy operations such as minimum operation. Therefore,
a hybrid neural network structure inspired by the pi-sigma neural network[13] is suggested. For

clarity, a neural network with two inputs is illustrated in Fig. 1. In Fig. 1, a shaded circle denotes
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a summing neuron with nonlinear activation function, while the blank circle represents a neuron
without nonlinear activation, IT means the product neurons and A represents the minimum neu-
rons. From Fig.1, it can also be noticed that the consequent part of the fuzzy rules is implemented
by a feedforward sub-network. Suppose the sub-network has one hidden layer with H neurons, the

overall output of the hybrid neural network can be written by:

>icy (wiy?)

s W
H n
yi=p" + 3 (879 | Y bz (5)
k=1 j=1
wt = min;‘:lA; (z;) (6)

where, g(-) is a sigmoid function, p(¥), p() and p(? are the weights in the sub-network. It is
noticed that the output layer of the sub-network is linear.

The hybrid neural network has very clear physical meanings. It is easy to observe that the
neural system described by Eqs. (4)-(6) is functionally equivalent to the Takagi-Sugeno fuzzy
system expressed in Eqs. (2)-(3), except for the fact that the linear consequent functions in
the Takagi-Sugeno fuzzy model has been extended to general nonlinear functions described by
a neural network. In addition, the membership functions can be arbitrary continous functions
that satisfy the definitions for fuzzy memberships. In practice, triangle, trapezoid and Gaussian
functions are most widely used, although recently, spline[14] and polynominal[15] functions are
also suggested as membership functions. However, they sometimes do not satisfy the definitions
for fuzzy memberships, and they are in most cases not normal.

B. Identification Algorithms Based on Neural Networks

Since the hybrid neural network system consists of minimal nodes that are not differential, the
gradient method based backpropagation algorithm can not be directly applied. There are some
alternatives to deal with this problem. In this work, two different approaches are suggested. The

first approach carries out an equivalent transformation of the minimum operator, so that it can be
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treated as differential and thus the gradient method can be applied. The other approach uses an one
step backward searching algorithm to avoid the differential operation on the minimum nodes. To
prevent the fuzzy subsets from losing their prescribed physical meanings, some additional measures
are suggested in Section III.
1. Equivalent Transformation of the Minimum Operator

It is well known that the gradient method can only be applied to differentiable functions.
Therefore, functions with minimum operators do not satisfy this condition. To solve this problem,
the minimum operator will be transformed equivalently so that the gradient method could be used
to derive the learning algorithm for identifying the fuzzy system. For the minimum operation with
n elements:

w' = min{ AL (z1), As(22), -+, Al (z)} (7)

we have,
Z [T Ui (@) — A5 ()] (8)
=1 mj

where,

Udinton) - 56 ={ 5 7 4o 25067 @

In this way, the learning algorithm can be derived based on the gradident method. Let y? the

desired output of the system, and define the following quadratic cost function:

1
B= (- (10)
thus,
, N
OF OFE 0y 0y* dy, i i
m:a—ya—yiwzw‘“w/zw )
0E OF Oy ayi
= —= = {p;cz g/(- :c]}/ w' (12)
OE  OE dy 8y aiy
w w' 13
8171(;) 8:1/ Yt ap (2) =Wy—-y ) g( )/Z:Z1 (13)
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According to Egs. (11)-(13), the learning algorithm of the consequent parameters could be ex-

pressed as follows:

Ap® = —nst (14)
Aply) = nZ{pl‘;?gf )z;}6 (15)
Ap? = —ng(-)5t (16)

where 7 is a positive learning rate and the general error &% is defined by:
N
8 =y —yHw'/ Y (17)
i=1

Next, we will derive the learning algorithms for the membership parameters. As indicated
above, Gaussian and triangular functions are most widely used fuzzy membership functions. Due

to this reason, we first suppose the membership functions are Gaussians in the following form:

Aj(w;) = exp(—(w; — aj)* /b)) (18)

thus we have:

OE OE oy ouw' 0Ai())

i Oy Ot HAL i (19)
Oa; Oy Ow' 0Al(z;) Oa
Since,
0Ai(xz;)  O{exp(—(z; — at ) /b’)} ) o
I J — 9A (2 ) (2 — al) /bt 9
8&; 861]- ](.’L'])((B] a])/bg ( 0)

Reminding the transformation of the minimum operation in equation (8) and equation (9), it is

straightforward that:

ow' O () [y ULl (2m) — 45 ()]}
045 (z;) 0A(z))
i i 1 , if A%(x;) minimum;
B U A om) = 5@ = { o, else] ’ (21)
mj
Substitute Eq. (20) and Eq. (21) into Eq. (19) and if we define:
%= -y -v)/ ) v (22)

=1
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then the learning algorithm for the membership parameters aé- can be written by:

Agi = { ~%(@ —apw'ds/by 5 if Aj(z;) minimum -
! 0 ;  else
Similarily, the learning algorithm for b;:
Abi — —w'(z; — a})?05/(0%)* ;  if A%(z;) minimum (24)
! 0 ;  else

where £ is a positive learning rate.
Now we consider the situation where the membership functions are triangular. For the sake of
simplicity, we assume the membership functions are all isosceles as shown in Fig.2. In this case, it

can be described by:

; 2|1: . — ai.|
A;(xj) =1- % (25)
J
Hence, the learning algorithm of a; and b; can be described by the following equations:
Agi = | ~2sgn(w; —a)dy /by ;5 if Aj(w;) minimum o
! 0 ;  else
B _ —antl8 /Bt - : il ..
Abl = [l —w'loz/b; ;  if Aj(z;) minimum 2
’ 0 ;  else

2. One-step Backward Searching Algorithm

In the above described method, the minimum operation is equivalently transformed so that
gradient method can be used to derive the learning algorithms. However, if we have a close look
at the transformation, we find that this transformation leads the gradient search toward the input
node of the fuzzy neuron that has the minimum value. This works if the initial distribution of
the membership functions agree with the real distributions approximately. However, if the initial
distributions have significant differences with the real distributions, this algorithm may fail to
find the optimal solutions. To expound this, consider a fuzzy neuron that implements minimum

operation as in Fig.3. In Fig.3, we have

O =min{A, B,C} (28)
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If A=0.5, B =04, C =0.3, then O = min(4, B,C) = 0.3. Suppose the desired value of the node
output is 0, then the error will be —0.3. According to the leraning algorithm developed above, the
input weight of connection C' will be adjusted because C' has the minimum value. However, it is
easy to notice that the error of the fuzzy neuron is not necessarily caused by weight C. It may be
the case that the truth value of B should be 0 and the error is fully caused by input weight B. To
cope with this situation, we introduce the hill-climbing searching method, which is a counterpart
of the gradient method and does not require the differentiability of the cost function. The learning
algorithm will be carried out in the following two phases. At first, all the input weights A, B and
C are updated simultaneously if there exists an error of e at the output O. Then comparisons are
made to see which modification reduces the error most significantly. As supposed above, if the
error before learning is —0.3 and after adjusting weight A, B and C, the new errors are —0.25,
—0.05 and —0.2 respectively. It is found that the smallest error is obtained by updating weight B.

Consequently, only weight B is actually modified.

IV. Interpretability Considerations

Given the above introduced learning algorithms, the rule parameters can be identified on-line
without any difficulty. However, if no other constraints are imposed, some problems may appear,
especially when adjusting the membership parameters. The problems that appear most frequently

are:

e Two neighbouring fuzzy subsets in a fuzzy partitioning have no overlapping and consequently

the partitioning is incomplete.

e The membership functions of two fuzzy subsets are so similar that the distinguishability
of the fuzzy partitioning is lost. This can not only make the fuzzy system unnecessarily

complicated, but also give rise to difficulties in assigning suitable physical meanings to them.

e The membership functions lose their prescribed physical meanings. For example, the center
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value of “small” may preceed that of “big”.

All these phenomena harm the interpretability of fuzzy systems. To avoid these problems, we
suggest here some constraints on the membership parameters which should be checked on-line
during learning. First of all, to keep the prescribed physical meanings, the center values of each

fuzzy subset in one fuzzy partitioning should satisfy the following condition:
1 2 n
ai < a/i < tet < az' (29)

where we suppose the fuzzy partitioning of z; is composed of n fuzzy subsets {4} (z;), A?(z;), - -+,
A?(z;)}. Before we introduce the conditions to guarantee the completeness and distinguishability
of the fuzzy partitionings, we first introduce the concept of fuzzy similarity measure between two

fuzzy subsets:

M(ANB)
FSM(A,B) = 30
SM(4,B) M(A)+ M(B)— M(AUB) (30)
where M (A) is called the size of fuzzy set A and is calculated as:
M(A) = / A(x)dz (31)
zeU

where U is the universe of discourse of z. It is noticed that if FSM (A, B) = 0, the two fuzzy sets
have no overlapping, on the contrary, they are completely equal if FSM (A, B) = 1. Therefore,

the fuzzy partitioning is complete if any of its two neighbouring fuzzy subsets satisfy:
—_—
FSM(ALLAI™)>0 (32)

To ensure a good distinguishability of a fuzzy partitioning, the following condition should hold for

two arbitrary fuzzy subsets in the fuzzy partitioning:
FSM(AI, AF) < § (33)
where 0 < § < 1 is a constant to be determined.

V. An Application Example: Decoupled Control of Robot Manipulators
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Dynamic control of robot manipulators is a challenging task in the field of system control.
Various modern control strategies have been widely investigated to deal with the high nonlinearity
and strong coupling of the robot dynamics. In this chapter, we try to control the robot manipulators
using Takagi-Sugeno fuzzy models.

Although Takagi-Sugeno fuzzy rules are believed to have stronger mapping ability than the
Mamdani fuzzy rules, they are much more complex, especially when the input dimension is high.
For example, for a rigid robot with N-degree-of-freedom, there are 3N input parameters (link
position, velocity and acceleration) and if each input is divided into 6 fuzzy subspaces, there
will be 63N fuzzy rules in total. Suppose first-order Takagi-Sugeno rules are adopted, then each
rule consists of N x (3N + 1) consequent parameters and consequently there are N (3N + 1)63V
parameters to be estimated. If N = 6, the number is about 1.16 x 106, which is very huge and
makes it impossible for real-time implementation. It is therefore sensible to decouple the robot
dynamics before we apply the Takagi-Sugeno fuzzy model to robot control. In the decoupled robot
dynamics, there are only two input variables, namely, position and velocity, for each link. In this
case, the number of parameters to be estimated will be greatly reduced. In the above example,
only N x 62 fuzzy rules are needed, each consisting of 3 consequent parameters. When N is 6, the
total number of parameters are only 648.

A. Decoupling of the Robot Dynamics

Two main approaches are used by most researchers to derive the dynamics of robot manipulators,
namely, Lagrange-Euler and Newton-Euler formulations. From the control point of view, the
Lagrange-Euler formulation is very desirable. For an N-degree-of-freedom rigid robot, the Lagrange

equation of motion is as follows:
T =H(q)§+M(q,9) + G(q) (34)

where 7 is N-dimension torque vector, H(q) is N x N inertia matrix, M(q,q) is N-dimension

coriolis and centrifugal force vector, G(q) is N dimensional gravity vector and g, ¢ and G are N
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dimensional angular, velocity and acceleration respectively. Let z; = ¢;, 2ny4 = ¢:(1 = 1,2, ...

then the robot dynamics can be written as:
X = AX)+BX)U
Y =C(X)

where X = [X1Xo]T = [z1, .., ZN, ZN41, - TaN] T, U = [11, ., 78] T, C(X) = X1, and

B X, T o
A(X)_ _H—l(M+G):|aB(X)_|:_H—1:|
Define the following operator [16]:
N4CH(X) = [N XA G = 1,2, N —1

N3Ci(X) = Ci(X)
where C;(X) is the i-th row of C(X). Define the relative degree of the system:

d; = minj{[aiXNﬁflCi(X)]B(X) 4£0},j=1,2,...,N

then we have the following control that decouples the robot dynamics:
U=FX)+GX)V
where V' is the new control vector of the decoupled linear system, and
F(X) = —(D*)"}(X)(F} (X) + F3 (X))
G(X) = —(D*) (X)A
* 6 d;
Di(X) = 55 N4 Ci(X)|B(X)

Fjy(X) = N3 Ci(X)

d;—1
F5(X) = > ariNECi(X)
k=1

V),

(38)

(39)

(40)
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A= diag[)\l,...,)\N] (47)
where D} (X), Fy;,(X) and F3;(X) are the i-th row of matrix D*(X), Fy(X) and Fj (X) respectively,

ak,; are some constants to be determined. For the robot system given in Eq. (35), since

S IVAG(IBX) =0 (49)
and

0

D IVAG(X))B(X) £ 0 (49

therefore the relative degree of the system is

Thus we have the following decoupled linear model for the robot system:

T; IN+1
-Z -+ O
. A1 Gt
TNt1 —a0,121 — G1,1TN on
N : AN
T2N —Qo,NTN — A1,NT2N

It is straightforward that the sub-system for each link is a time-constant two-input single-output
linear system. The parameters of the linear system should be chosen in such a way that the linear
sub-systems are stable.

As we have mentioned above, the decoupled linear systems are time-constant if the dynamics
of the robot is exactly known. In this case, a conventional PD controller will perform successfully.
However, there are always parameter errors in real robotic systems. Moreover, it is difficult to
model such dynamics as nonlinear friction, backlash and other uncertainties in robot systems.
Therefore, adaptive fuzzy controlers are necessary to deal with the uncertainties.

B. Simulation Study
For the sake of simplicity, a two-degree-of-freedom rigid manipulator is studied in this simulation.

The dynamics of the system is expressed as follows:

n]-[E Eella]+Da]+[&] o)
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where
Hyy = (my +mo)l? +mal3 + 2mylilacos(go) (53)
Hiy = Hy = mglg + malilacos(ga) (54)
Hyy = mzlg (55)
My = —2mylilzsin(g2)dide — malilasin(gz)ds (56)
My = malilasin(gs)d? (57)
G1 = (m1 + ma)glicos(q1) + maglacos(qi + g2) (58)
G2 = maglacos(q1 + g2) (59)

where m4 and my are the mass of the two links, /; and ls are the link lengths, and g is the gravity.

Without the loss of generality, the parameters of the linearized model is chosen as follows:
0.1G; +¢ =V, (i=12) (60)

The two inputs are zi = ¢;, b = qf — ¢; and the output is y; = v;(1 = 1,2). The diagram of the

control system is shown in Fig. 4. The desired trajectories for the two links are
q(t) = exp(0.5t)(rad) (61)

qd(t) = 0.5 + exp(0.4t)(rad) (62)

In order to observe how the controler behaves in the presence of various uncertainties, two
cases of uncertainties, namely, parameter variation and unmodeled friction, are considered.
1. Parameter variations

We first suppose both the mass and the length of the two links have an error of 10%. After
10 iterations of learning, the tracking errors of the two links are acceptable(see Fig. 5), noticing
that there exist initial position errors of 0.2(rad) and 0.1(rad). The membership functions of link1

and link 2 are provided in Fig. 6 and Fig. 7, where the membership functions in (a) are for input
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xi, whilst those in (b) are for z%. It is seen that all the fuzzy partitionings are complete and fairly
distinguishable thanks to the measures that are taken to preserve the interpretability.
2. Unmodeled friction

The Lagrange model of robot dynamics usually does not consider the nonlinear friction. In
order to investigate the performance of the controller in the presence of unmodeled nonlinear

friction, the following nonlinear friction is added in simulation:

fi= fQi(qivTi) + fvi(qi) (z = 172) (63)

where f,, and f,, are the Columbus and viscous friction respectively, which can be expressed by:

kisgn(q), |g:| >0

fai(di» i) = § kisgn(Ti), |di| =0, |mi| > ks (64)
Ti, lds| =0, || < ks

where, k; and C; are constants. In simulation, we set [k1,k2] = [0.2,0.05], [C1,C2] = [0.05,0.01].
The tracking errors of the two links are presented in Fig. 8 and the membership functions are

demonstrated in Fig. 9 and Fig. 10 respectively.

VI. Conclusions

Identification methods for Takagi-Sugeno fuzzy systems based on neural networks are proposed
in this chapter. These methods are suitable for on-line learning and applicable to both zero-
order and high-order Takagi-Sugeno fuzzy systems. To maintain the interpretability of fuzzy
systems, some measures are taken in the process of learning. The effectiveness of the proposed
methods are shown by simulation studies on control of robot manipulators in the presence of
various uncertainties.

In this work, the structure of the fuzzy system is fixed beforehand. However, such a standard
rule structure is usually not optimal. The optimization of the rule structure can be realized either

by introducing neural network pruning techniques[17] or by using evolutionary computation[18].
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Figure Lengends

Fig. 1. The structure of the hybrid neural network
Fig. 2. Isosceles triangulars as membership functions
Fig. 3. Illustration of a fuzzy neuron
Fig. 4. Diagram of the robot control system
Fig. 5. Position tracking errors in the presence of parameter uncertainties
Fig. 6. Membership functions of the fuzzy controller for link 1
Fig. 7. Membership functions of the fuzzy controller for link 2
Fig. 8. Position tracking errors in the presence of unmodeled friction
Fig. 9. Membership functions of the fuzzy controller for link 1

Fig. 10. Membership functions of the fuzzy controller for link 2



