
Quality Measures for Approximate Models in Evolutionary
Computation

Yaochu Jin

Honda Research Institute Europe
63073 Offenbach/Main, Germany

yaochu.jin@honda-ri.de

Michael Hüsken
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Abstract

This paper introduces different metrics for
measuring the quality of meta-models in evo-
lutionary computation. The relations be-
tween the different metrics are empirically
analyzed and neural network models are
trained using these different criteria.

1 Introduction

In the recent years, the interest in using approximate
models (also known as meta models, or surrogates)
for fitness evaluations in evolutionary computation has
been increasing [1, 3]. Usually, the quality of approxi-
mate models is evaluated with the quadratic approxi-
mation error. However, the approximation task in the
context of a meta-model for fitness approximation is
not completely the same as in the context of optimal
prediction. For a meta-model a qualitative approx-
imation is often sufficient, whereas prediction needs
a minimal quantitative difference. The examples in
Fig. 1 (a) and (b) illustrate what we mean by “qual-
itative”. The approximation accuracy of the neural
networks shown might be quite unsatisfying, neverthe-
less, these approximate models are still able to lead an
optimization algorithm to the correct minimum of the
fitness function. In this sense, the quality of the meta-
model for fitness approximation is sufficient, although
the approximation error is high. Thus, it is worth con-
sidering other quality measures for evaluating neural
networks that are used as surrogates in evolutionary
computation.

In this paper, we will present some different metrics
for measuring the quality of meta-models for fitness
approximation in evolutionary computation. The re-
lationship between these metrics and the quadratic ap-
proximation error is empirically studied. Neural net-
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Figure 1: Although the approximation errors of the
neural network models are quite large, the optimiza-
tion by means of the approximate models leads to the
desired minimum of the fitness.

works are trained based on these different metrics us-
ing an evolution strategy. Discussions of the prelimi-
nary results are included at the end of the paper.

2 Quality Measures

One of the main issues in the design and use of meta-
models for evolutionary computation is their quality.
However, quality of approximate models for evolution-
ary computation is not necessarily a close quantitative
approximation of the original fitness function. Rather,
the meta-model should enable the evolutionary algo-
rithm to select the best individuals in terms of the
original fitness function.

2.1 Definition of Quality Measures

The most popular measure for model quality is the
mean squared difference between the individual’s orig-
inal fitness function φ(orig.) and the output of the ap-
proximate model φ(model)

E(mse) =
1

n

n
∑

j=1

(

φ
(model)
j − φ

(orig.)
j

)2

. (1)



Here, the mean squared difference is averaged over n
different individuals taken into account for the estima-
tion of the quality measure, e.g., the n = λ offspring
individuals in one generation.

Generally speaking, a model with good approxima-
tion quality ensures the correct evaluation and conse-
quently the correct selection of the individuals. How-
ever, from the evolutionary computation point of view,
only the correct selection is of importance. In the
following, we define a number of measures that fo-
cus primarily on the correct model-based selection and
not on the approximation accuracy. The exact defini-
tions of the first two measures depend on the selection
method. We give expressions only for the case of the
(µ, λ)-selection with λ ≥ 2µ, nevertheless, it is in prin-
ciple possible to extend the ideas and expressions to
other selection schemes.

The first measure we suggest is based on the number
of individuals that have been selected correctly using
the approximate model:

ρ(sel.) =
ξ − 〈ξ〉

µ− 〈ξ〉
, (2)

where ξ (0 ≤ ξ ≤ µ) is the number of correctly selected
individuals, i.e., the number of individuals that would
have also been selected if the original fitness function
had been used for fitness evaluation. The expectation

〈ξ〉 =

µ
∑

m=0

m

(

µ
m

)(

λ−µ
µ−m

)

(

λ
µ

)

=
µ2

λ
. (3)

of ξ in case of random selections is used as a normal-
ization in (2). It can be seen that if all µ parent in-
dividuals are selected correctly, the measure reaches
its maximum of ρ(sel.) = 1, and that negative values
indicate that the selection based on the approximate
model is worse than a random selection.

The measure ρ(sel.) only evaluates the absolute number
of correctly selected individuals. However, in case of
ρ(sel.) < 1 the measure does not indicate, whether the
(µ + 1)-th best or the worst offspring individual has
been selected, which may have significant influence on
the evolution process. Therefore, the measure ρ(sel.)

is extended to include the rank of the selected indi-
viduals, calculated based on the original fitness func-
tion. The definition of the extended measure ρ(∼sel.)

is as follows. The approximate model gets a grade of
λ −m, if the m-th best individual based on the orig-
inal fitness function is selected. Thus, the quality of
the approximate model can be indicated by summing

up the grades of the selected individuals, which is de-
noted by π. It is obvious that π reaches its maximum,
if all µ individuals are selected correctly:

π(max.) =

µ
∑

m=1

(λ−m)

= µ

(

λ−
µ+ 1

2

)

. (4)

In analogy to (2) the measure ρ(∼sel.) is defined by
transforming π linearly, using the maximum π(max.)

as well as the expectation 〈π〉 = µλ
2 for the case of a

purely random selection:

ρ(∼sel.) =
π − 〈π〉

π(max.) − 〈π〉
. (5)

Besides these two problem-dependent measures for
evaluating the quality of the approximate model, two
established measures — the rank correlation and the
(continuous) correlation — partially fit the require-
ments formulated above. The rank correlation [5],
given by

ρ(rank) = 1−
6
∑λ

l=0 d
2
l

λ(λ2 − 1)
, (6)

is a measure for the monotonic relation between the
ranks of two variables. In our case, dl is the differ-
ence between the ranks of the l-th offspring individual
based on the original fitness function and on the ap-
proximate model. The range of ρ(rank) is the interval
[−1; 1]. The higher the value of ρ(rank), the stronger
the monotonic relation with a positive slope between
the ranks of the two variables. In contrast to ρ(∼sel.),
the rank correlation does not only take the ranking
of the selected individuals, but also the ranks of all
individuals into account.

Another possibility to quantify the idea that the ap-
proximate model should ensure correct selection, but
not necessarily reproduce the correct fitness values, is
given by the (continuous) correlation between the ap-
proximate model and the original fitness function:

ρ(corr.) =

1
n

∑n
j=1

(

φ
(m)
j − φ̄(m)

)(

φ
(o)
j − φ̄(o)

)

σ(m) σ(o)
. (7)

Here, φ̄(m) and φ̄(o) are the mean values and σ(m) and
σ(o) the standard deviations of the approximate model
output and original fitness function, respectively.

3 Empirical Comparisons

The mean squared error is used as the quality criterion
in training the approximate model with data from the
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Figure 2: Scatter plots to illustrate the relation be-
tween the different measures. Each circle corresponds
to one model, evaluated based on the data of one gen-
eration.

evolutionary blade optimization [4, 2]. In Fig. 2 we
compare ρ(∼sel.) with the other four measures. First
of all, a mainly linear relation between the measures
ρ(corr.), ρ(rank), ρ(sel.) and ρ(∼sel.) becomes obvious,
Fig. 2 (a)-(c). Moreover, the relation between ρ(∼sel.)

and ρ(rank), Fig. 2 (a), as well as ρ(∼sel.) and ρ(corr.),
Fig. 2 (c) looks very similar, which is also emphasized
by the high correlation between ρ(corr.) and ρ(rank) (not
depicted). Compared with this result, the measure
ρ(sel.), Fig. 2 (b), seems to be too coarse-grained to
serve as a suitable basis for evaluating the different
models.

As the range of E(mse) strongly depends on the shapes
of the blades, Fig. 2 (d) is based only on the data from
the same generation of the design optimization, evalu-
ated with differently optimized models. For small val-
ues of E(mse) the measure ρ(∼sel.) is decreasing with in-
creasing E(mse), for larger mean squared error ρ(∼sel.)

is mainly fluctuating with zero mean. In particular
these strong fluctuations indicate, that E(mse) is only
weakly related to the ability to select the correct in-
dividuals. Due to the strong linear relation between
ρ(∼sel.), ρ(sel.), and ρ(rank), this result can be carried
over to the other measures.

4 Neural Networks Training

In this section, we train neural networks using the
root mean squared error (RMSE) criterion, the cor-
rect selection criterion (CS) defined in eqn.(2), the
potentially correct selection (PCS) criterion, eqn.(5),
and the correlation criterion, eqn.(7). The Lamarckian
evolutionary method described in [2] is used for min-
imization of the approximation error or maximization
of the CS and PCS ratios and the correlation.

The change of the criteria during the training using
the accuracy criterion is shown in Fig. 3. It can be
seen that as the approximation error decreases dur-
ing the training, the correlation between the output
of the model and that of the original fitness function
increases and is finally close to 1, which indicates that
these two variables are strongly correlated. On the
other hand, the increase of CS and PCS are rather
slow and are fluctuating around zero (random selec-
tion) till 100 iterations. This result agrees with the
results shown in Fig. 2(d). The final value of the CS
and PCS is smaller than 0.5, which means the ratio
of correctly selected individuals is quite low when this
model is used during evolution.

The training results using the other three criteria are
somewhat surprising. It is noticed from the Figures
3(b), (c) and (d) that the approximation error always
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Figure 3: Training of neural networks using the (a)
RMSE, (b) CS, (c) PCS and (d) correlation criterion.

increases during the training. Meanwhile, the corre-
lation, the CS and the PCS criteria are quite well
correlated. However, all these results do agree with
the correlation analysis in Fig. 2, i.e., the CS, PCS
and correlation criteria are almost linearly correlated
with each other, while the approximation error is not
strongly correlated with three criteria.

The question now is, which criterion should be used
for training approximate models for evolutionary com-
putation. It is too early to say that the CS, the PCS
and the correlation criteria are not suitable for training
meta-models because of the large approximation error.
However, we should keep in mind that approximate
models are usually used together with the original fit-
ness function, as suggested in [4], and large approxima-
tion error could cause problems when individual-based
evolution control strategies are used.

5 Conclusions

This paper suggested a number of metrics for meta-
models for evolutionary computation. The relation
between the metrics are empirically studied. Neural
networks are trained using different criteria. Further
work should be done to investigate the performance of
the models trained using different metrics when they
are applied to fitness evaluation in evolutionary com-
putation.
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