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Abstract

The extraction of easily interpretable knowledge from the
large amount of data measured in experiments is well desir-
able. This paper proposes a method to achieve this. A fuzzy
rule systemis first generated and optimized using evolution
strategies. This fuzzy system is then converted to an RBF
neural network to refine the obtained knowledge. In order
to extract understandable fuzzy rules from the trained RBF
network, a neural network regularization technique called
adaptive weight sharing is developed. Smulation results on
the Mackey-Glass system show that the proposed approach
to knowledge extraction is effective and practical.

1. Introduction

Artificial neural networks and fuzzy systems are two of
the main modeling tools in soft computing. The key fea-
ture of neural networks is their learning capability, whereas
in the case of fuzzy systems it is the comprehensible rep-
resentation of knowledge. The nature of this representation
allows prior expert knowledge to be incorporated into fuzzy
systems. Thus, fuzzy systems are prefered if it is neces-
sary that the knowledge is represented in an intelligible way.
However, the adaptation ability of conventiona fuzzy sys-
tems is often weak. To solve this problem, neural and evolu-
tionary fuzzy systems [2, 5] have been proposed. Although
such hybrid fuzzy systems have exhibited remarkable learn-
ing abilities, they usually lose their interpretability, which is
the most essential feature of fuzzy systems.

Interpretability of a fuzzy system usually involves the
following aspects. Firstly, the fuzzy partitioning for each
input variable of the fuzzy system should be complete and
different fuzzy subsets in a fuzzy partitioning should be
well distinguishable. One direct method to achieve this is
to limit the range of the parameters of membership func-
tions during learning [8]. This can be achieved more flex-
ibly with the help of a fuzzy similarity measure [4]. Sec-
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ondly, the number of fuzzy subsets in a fuzzy partitioning
should be limited and each fuzzy subset should have one
unique membership function, to which a proper physical
meaning can be assigned. Thirdly, fuzzy rules in the rule
base should be consistent. Traditionally, this means that
fuzzy rules with the same premise should have the same
consequent [ 11, 3]. This has been extended in [4], where
we have argued that rules with similar premises should have
similar consequents. Finally, the number of rules in a fuzzy
system should be as small as possible.

This paper aims at extracting interpretable fuzzy rules
from data. A fuzzy system is first generated by virtue of
evolution strategies. Then we convert the fuzzy system to
an RBF neural network for further training to refine the
aquired knowledge. After this learning stage, the RBF neu-
ral network can not be directly converted back to a clearly
interpretable fuzzy system [ 12] because there may be nu-
merous fuzzy subsets in a fuzzy partitioning which are hard
to distinguish and hard to assign proper linguistic values to.
To solve this problem, a network regularization algorithm
called adaptive weight sharing is developed to train the RBF
neural network further so that some of the basis functions as
well as the output weights in the RBF network share certain
values. As a result, a well interpretable fuzzy system can
again be obtained. This method has proved to be successful
by simulation studies on the Mackey-Glass time series.

2. Fuzzy System Generation and Optimization
Using Evolution Strategies (ES)

In recent years, data based fuzzy rule generation and op-
timization have become popular. Several methods based on
genetic algorithms or evolution strategies have been pro-
posed. However, problems such as completeness and con-
sistency of the fuzzy rule systems may occur. To dea with
these problems, completeness and consistency indices have
been proposed and incorporated into the cost function of the
evolutionary algorithm [4]. The following subsections de-



scribe how complete and consistent fuzzy systems can be
generated.

2.1. Completeness conditions

Suppose an input variable of a fuzzy system x is parti-
tioned into M fuzzy subsets represented by A; (X), Az (X),
... Apr (X) on the universe of discourse U, then the parti-
tioning is complete if the following condition holds:

Veeu3i1<i<mAi(T) > o e))

In the optimization of fuzzy systems based on evolu-
tionary algorithms or neural networks, it is often the case
that either the fuzzy partitionings are incomplete or different
fuzzy subsets in a fuzzy partitioning lack good distinguisha-
bility. To avoid this, we require that every two neighbouring
fuzzy sets should satisfy the following constraints:

01 < S(Ai, Airr) <62 2

where S(A;, A;+1) is caled the fuzzy similarity measure
between the two fuzzy subsets A4; and A;y1,01 and d- are
two thresholds of the fuzzy similarity measure, where 4,
should be greater than zero to keep the fuzzy partitioning
complete and 2 should be sufficiently smaller than 1 to en-
sure good distinguishability. The fuzzy similarity measure
is defined by:

M(Ai N Aitr)
M(Az) + M(AH_l) — ]\4'(142 n A1+1)(3)
where M( .) is called the size of the fuzzy set. If fuzzy set
A(X) has a Gaussian membership function with center
and width (or variance) o, then M (A(X)) can be calculated

M(A(X)) = / " exp (-Q;—“)Z> iz @

—00

S(Ai, Ai+1) =

It is noticed that if S(A;, A;+1) equals 1, the two fuzzy sets
overlap completely, i.e. A; and A;4+1 are equa. On the
other hand, they do not overlap if S(A;, A;+1) = 0.

2.2. Consistency of fuzzy systems

Another important issue in data based fuzzy system gen-
eration is the consistency among the fuzzy rules and the
consistency with the prior knowledge. It is easy to imagine
that two fuzzy rules are inconsistent if they have the same
if-part but different then-parts. However, we argue that two
fuzzy rules may aso be inconsistent even if their if-parts are
different. To evaluate the consistency of two arbitrary fuzzy
rules, definitions of Similarity of Rule Premise (SRP) and
Smilarity of Rule Consequent (SRC) are given. Consider
the following two fuzzy rules:
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R;: If T iSAil(lil) and 2 iSAig(zz) and...and z, is
Ain (wn)’ then y is B; (y)

Ry :If z1is Ag1(z1) and z2is Aga(z2) and . . . and z,, is
Agn(zr), then y is B (y)

Then SRP and SRC between rule 7 and rule k are defined in
terms of the fuzzy similarity measure as follows:

SRP(i, K) = A", S(Aij, Arj) 5)

SRC(i, k) = S(Bs, Bk) ©)

where n is the total number of the input variables. The con-
sistency between rule R(i) and R(k) can now be defined
as.

SRP(i,k) 2
(3rcam — 10

)

Cons(R(i), RK)) = exp § — RS

(_S_RP(z'—,k) )
Thus, an inconsistency index of the fuzzy system can be
given by:

N
frncons = 3 ¥ [LO—Cons(R(i), R(k))] (8

i=1 1<k<N
k#i
where N is the total number of rules. It is also feasible to
evaluate the inconsistency between the fuzzy system and the
prior knowledge expressed in fuzzy rules using this index.
Some remarks are to be made on the completeness and
consistency conditions. Since they impose additional re-
strictions in generating fuzzy systems, they could be treated
as a means of regularization. They play an important role
if the training data are insufficient [4], irregular or noisy.
On the other hand, they do not influence the rule evalua-
tion significantly if the training data are sufficient, equally
distributed and pure. In addition, the consistency condition
makes it possible to avail of prior knowledge in terms of
negative examples in fuzzy rule generation.

2.3. ES based fuzzy rule generation and op-
timization

We use a hybrid evolution strategy which is able to deal
with optimization problems with both real and integer pa-
rameters [1] to generate and optimize an initial fuzzy rule
system. The quality of the fuzzy system can be evaluated
by the following cost function:

f:fE'i'f . fIncons+fIncomp ()]

where, fg denotes the conventional error term, frncons IS
defined as in equation (8) and frncomp IS @ penalty term de-
pending on whether the completeness condition in eguation
(2) is satisfied. If the condition is satisfied, frncomp = O;



Otherwise, frncomp iS S0 large that the corresponding indi-
vidual can no longer survive.

The coding of the rule structure is as follows. Suppose
there are n input variables and each input z; (:=1,2,...,n)
has at most M; subsets, then the rule base has at most
N = M; X My X ... .M, fuzzy rules. Therefore, the
rule structure can be encoded by the following integer ma-
trix:

r a1 a2 -+ Qi b1
a2l azz ... Gan b2 (10)
aN1 an2 ann ON | Ny(me)

where aj; E{O, 1,2,... ,Mz} and bje{l,z,... , Mn+1},
where M, 11 is the largest number of fuzzy subsets for the
output. The integers 1,2,..., M; and 1,2,.-., My, 41 rep-
resent the corresponding fuzzy subsets of the inputs and the
output respectively. Notice that a;; may also equal zero,
which implies that the i-th input does not appear in the j-
th rule. If all the inputs do not appear, this rule is deleted
automatically. Since we try to optimize the rule parameters
as well as the rule structure, al the parameters of the mem-
bership functions will also be encoded. In this way, both
the rule parameters and the rule structure will be evolved
according to equation (9) by the evolution strategies and an
initial fuzzy rule system will be generated.

3. Conversion of the Fuzzy System to an RBF
Network

The significance of converting fuzzy systems to neural
networks lies in two aspects. On the one hand, a fuzzy sys-
tem can be refined taking advantage of the learning ability
of neural networks. On the other hand, the structure of a
neural network can be determined and prior knowledge can
be incorporated into the network with the help of a fuzzy
system. Moreover, we hope a trained RBF neural network
can again be converted back to a fuzzy system. Although
Jang and Sun [2] have proposed some restrictions for the
equivalence between RBF neura networks and fuzzy sys-
tems, we think it is meaningful to look at this problem
closer. We conclude that an interpretable fuzzy system and
an RBF neura network are equivalent if the following con-
ditions hold:

1. Both the fuzzy system and the neura network have
Gaussian basis functions.

2. The number of fuzzy rules is equal to the number of
receptive field units ( or hidden nodes) in the RBF net-
work.

3. The fuzzy system is either a zero-order Takagi-Sugeno
model or a Mamdani model. If a Mamdani model is
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used, the corresponding defuzzification method should
be the simplified weighted average [4]. In both cases,
the product T-norm should be used.

4. The output of the RBF neural network should be nor-
malized [ 9].

5. The receptive field units in the RBF network are al-
lowed to have different variances.

6. Centers and variances from different receptive field
units but for the same input variable should share cer-
tain values, which could construct a complete and well
distinguishable fuzzy partitioning. If Mamdani fuzzy
rules are expected, some of the output weights should
also share.

In this paper, “weights’ refer to both the parameters of
the basis functions and the output weights. We think con-
dition 4 is important in that it enables the Mamdani fuzzy
systems as well as Sugeno fuzzy systems to be converted
to an RBF neura network. Condition 5 avoids a dilemma,
where either al of the membership functions of the fuzzy
system are forced to have the same variance, or each mem-
bership function can be used only once. In the former case,
the flexibility of the fuzzy system will be seriously harmed,
while in the later case, the number of fuzzy subsets equal
the number of fuzzy rules, which will obviously damage the
interpretability of the fuzzy system, because the rule num-
ber is usualy large. Finally, the weight sharing condition
is necessary if a fuzzy system extracted from an RBF neu-
ral network is expected to be interpretable. That is to say,
the effective number of parameters in an interpretable fuzzy
system is smaller than the effective number of the parame-
ters in its mathematically equivalent RBF network.

In this section, we convert the fuzzy system generated
by evolution strategies to an RBF network for further train-
ing using the learning algorithm of the neural network. The
final input-output relationship of the fuzzy system with n
inputs and one output is expressed as follows:

N j zi —pij)®
3 w Ty exp( — (=) a
y= N : ;)2
Yj=1 I1%, exp(— e - : )

i

where N is the number of fuzzy rules (the number of hidden
nodes of the RBF network), m; is the number of premises
in the j-th rule (the dimension of the basis function of the
j-th hidden node of the RBF network), p;; and o;; are pa-
rameters of the membership functions (the parameters of the
basis functions), and w; is the consequent parameter of the
j-th fuzzy rule (the weight between the j-th hidden node
and the output node).

As stated in restriction 6, for an RBF network that is
equivalent to a well interpretable fuzzy system, some of its



weights should share. However, this constraint is temporar-
ily lifted at this training stage to guarantee that a good so-
lution can be found. Consequently, a conventional learning
algorithm based on the gradient method can be directly ap-
plied. The agorithm is easy to derive and therefore will not
be expounded here.

In addition to parameter adaptation, premises whose
membership function is very flat will be set to ‘don’t care’
and rules with a very low activation strength will be deleted.
This is effective in simplifying the fuzzy system.

4. Extraction of Fuzzy Rules by Regularization

Since all the parameters have been adapted using the
conventional learning agorithm, no weights in the RBF
neural network necessarily share the same value when the
learning process ends. In this case, the RBF neura net-
work can no longer be converted back to awell interpretable
fuzzy system. To extract meaningful fuzzy rules from the
trained neural network, we introduce here a novel weight
sharing regularization technique. This technique enables
the output weights and the parameters of the basis func-
tions of the RBF network to share some certain values so
that each fuzzy partitioning has a proper number of fuzzy
subsets with well distinguishable membership functions.

4.1. Determination of shared weights

Firgt, it is necessary to find out which weights should
share. To this end, we need some tools to measure the simi-
larity of different weights. Euclidean distance, Minkowsky
metric and Tanimoto similarity are some available mea-
sures. For the sake of simplicity, we use here the Euclidean
distance. For any two vectors Vi = (v11,v12, . . . . V1m) and
Va = (va1,022, . ..c V2m), their Euclidean distance is ex-
pressed as follows:

D(V1,Va) = | ) (vik — v2x)? (12)
k=1

In our work, there are two different cases. For the basis
functions, each vector has two elements, namely the center
and width of the Gaussian functions. For the output weight,
there is only one element. We take the basis functions as
an example, and if we assume that input x; has M different
basis functions A;; (5 =1,2,...,M) with center p;; and
width o5, then specification of shared weights proceeds as
follows:

1. Arrange the basis functions A;; in an increasing order
according to their center values. Set A;;to Uy, where
U;x 1s a set of weights whose Euclidean distances are
within a prescribed threshold of d;; let 5,k =1, A? =
A
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2. If D(A?,Aij+1)<di,setAij+1 to Usk;
glse k=k+1, sat A¢j+1 to Usx, let A? = Aij+1.

3.5=4+1if <M, go to step 2, else stop.

All the basis functions assigned to the same set Ui
should share a mutual center and a mutual width value. We
find in practice that if we simply select the average center
and the average width of a set as the values to be shared,
the performance of the extracted fuzzy system will not be
satisfactory. Therefore, an adaptive weight sharing regular-
ization technique is proposed in the next subsection.

4.2. Adaptive weight sharing

Reduction of the effective number of parameters in ar-
tificial neural networks is believed to be an efficient way
to improve their generalization ability. This has resulted in
several network regularization techniques, one of which is
called weight sharing [7]. The basic idea of weight sharing
is to let a single weight be shared among many connections
so that the number of adjustable weights in the neural net-
work is limited. If it is not known in advance which weights
should share, soft weight sharing [10] can be used.

To extract interpretable fuzzy rules from the trained RBF
neural network, an adaptive weight sharing method is pro-
posed here. We do not constrain the shared weights to have
the same value, instead, we realize weight sharing by reg-
ularizing the RBF neural network, i.e. by adding an extra
term to the conventional cost function. Thus, the whole cost
function can be defined by:

J=E+X-Q 13)

where E is the usual quadratic error function, X is the reg-
ularization coefficient (A < 1) and €2 is a penaty term for
weight sharing expressed in the following form:

Q = _(ZZ Z (i —sz)

i 'k AijEU

A3 (o —aw)) (4

1 k Ai;€Uir

where [i;x and &, are the center and width values to be
shared for the weights in set U;x. The average center and
width of each set U will be set to their initial values. If
Mamdani fuzzy rules are to be extracted, the output weights
w; should also be regularized. In this case, a similar cluster-
ing process on the w;’s will be carried out and an extra term
should be added to Q. All the parameters, including the
shared weights fi;x and .z, will be adjusted by applying
the gradient method on the cost function in equation (13):

oJ OF

= b Mg — i) ()
iy |Ai;eUn= o (Bij — Bir)



oJ OF
aaij IAIJEUUC 30” + )\(JJ % k) ( )
oJ
L iy — s (17)
3,Uik A“’;]ik( ’ k)
oJ
= -\ Oij — 5’1 18
dair Aij%;],—k( 7 k) (1%

5. Simulation Studies

In this section, simulation studies on a prediction prob-
lem of the Mackey-Glass time series are carried out to show
the feasibility of the proposed method. The Mackey-Glass
time series is described by:

_ax(t —1)

T = ]_-I-T(t—’r) - CX('[)

19
where 7 =30, a=0.2, b = 10, and ¢ = 0.1. One thousand
data points are used in the simulation, 500 points for train-
ing and the other 500 points for test. Our task is to predict
X(t) using x(t — 1), x(t — 2) and x(t — 3). That is to say,
the fuzzy system has three inputs and one output. Each in-
put variable is primarily partitioned into 3 fuzzy subsets and
the output is partitioned into 4 fuzzy subsets. Therefore, if
the fuzzy system takes the standard rule structure, there will
be 27 fuzzy rules in total. By using the fuzzy rule genera
tion method with both parameter and structure optimization
introduced in section 2, 13 fuzzy rules are generated, which
are provided in Table |, where a ’*’ denotes ‘don’'t care’. It
should be pointed out that, according to the consistency def-
inition given in equation (7), a more specified rule will not
be considered inconsistent with a more general rule even if
their consequents are different (refer to the third and fourth
rules in Table I). The mean absolute errors for training and
test are both about 0.027.

In order to refine the knowledge obtained by the ES gen-
erated fuzzy system, an RBF neura network is constructed
according to the fuzzy system. The RBF network is fur-
ther trained using the 500 training data for 5000 iterations.
During training, al the rules whose average activation level
is less than 0.01 are deleted. Thus, 6 fuzzy rules remain,
which are provided in Table Il. The mean absolute errors
for training and test are now reduced to about 0.008. From
Table I, we notice that for x(t —2), x(t — 1) and x(t), no
weights share and the distinguishability of different weight
values is not good. In other words, the RBF network can
not be directly converted back to a fuzzy system that can
clearly be interpreted.

The specification process introduced in section 4.1 is ap-
plied to the rules in Table Il. As a result, x(t — 3) has one
group, X(t — 2) and x(t) have two groups and x(t — 1) has
three groups. Using the adaptive weight sharing algorithm
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Table 1. The ES Generated Fuzzy System

| If [ Then
| x(t-3) x( t-2) | x(t-1) x(t)
¥ (001,1.35) | (1,066 | 150
(0.07,0.21) | (0.02,0.34) % 0.00
(0.07,0.21) % (0.34,0.69) | 0.00
(0.07,0.21) % — 0.30
(0.07,0.21) | (0. 01,1.35) ¥ 0.95
% % (0.34,0.69) || 0.00

x (0.01,1.35) | (0.34,0.69) || 0.00
(0.07,0.21) | (0.01,1.35) | (1.26,3.60) || 0.00

% (0.02,0.34) % 0.00

* * (1.21,0.66) || 1.50
(0.13,3.97) | (0.01,1.35) % 1.50

% (0.25,1.80) | (0.34,0.69) || 0.00
(0.13,3.97) | (0.02,0.34) | (1.26,3.60) || 0.00

Table 2. The Fuzzy System After Learning

| f Then

x(t-3) X(t-2) x(t-1) x(t)

* (0.02,0.84) | (1.04,0.53) || 1.50

* * (0.18,0.58) || 0.03

* (0.16,1.46) | (0.26,0.12) || 0.00

* * (1.50,0.22) 1.32
(0.02,3.94) | (0.00,0.38) * 1.46
* (0.40,1.89) | (0.11,0.27) || 0.0

suggested in the last section, six fuzzy rules are obtained
(see Table I11), two of which are the same. The mean abso-
lute errors for training and test are both about 0.016.

According to the distribution of the membership func-
tions, a proper linguistic value can be assigned to each fuzzy
subset of the inputs (refer to Figure 1, Figure 2 and Figure
3). For example, for x(t — 2), “SMALL" can be assigned
to its membership function (0.01,0.7) and “ quite SMALL”
can be assigned to the membership function (0.29, 1.68). In
this way, the following knowledge concerning the Mackey-
Glass time series in terms of well understandable fuzzy
rules can be extracted.

o If X(t —2) isSMALL and x(t — 1) is BIG, then x(t) is
BIG.

o If X(t —1) is quite SMALL, then x(t) is SMALL.

o If x(t —2) is quite SMALL and x(t — 1) is SMALL,
then x(t) is SMALL.

o If x(t — 1) is BIG, then x(t) isBIG.



Table 3. The Extracted Fuzzy System

If Then

X(t-3) X( t-2) X(t- 1) x(t)

* (0.01,0.70) | (1.39,0.63) || 1.43

* * (0.35,0.65) || 0.00

* (0.29,1.68) | (0.25,0.22) || 0.00

* * (1.39,0.63) || 1.43
(0.00,3.93) | (0.01,0.70) * 1.43
* (0.29,1.68) | (0.25,0.22) || 0.00

SMALL
o5k
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(t-3)

Figure 1. Membership functions for z(t — 3).

o If x(t—3)isSMALL and X(t — 2) is SMALL, then x(t)
isBIG.

It is interesting to notice that the extracted fuzzy rules
mainly cover the extreme points of the series. This coin-
cides with the analytical results drawn from some function
approximation problems in [6].

6. Conclusion

An approach to rule-based knowledge extraction is de-
scribed in this paper. Methods for generating complete and
consistent fuzzy systems using evolution strategies, fuzzy

ool SMALL quite SMALL

Fuzzy Parttioning
@

06 12

1
x(t-2)

Figure 2. Membership functions for z(t — 2).
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Figure 3. Membership functions for z(t — 1).

rule refinement based on RBF neural networks and rule ex-
traction using an adaptive weight sharing algorithm have
been presented. .A simple rule extraction study on the
Mackey-Glass time series has shown the feasibility of the
proposed approach.
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