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Abstract. The conventional weighted aggregation method is extended
to realize multi-objective optimization. The basic idea is that systemat-
ically changing the weights during evolution will lead the population to
the Pareto front. Two possible methods are investigated. One method is
to assign a uniformly distributed random weight to each individual in the
population in each generation. The other method is to change the weight
periodically with the process of the evolution. We found in both cases
that the population is able to approach the Pareto front, although it
will not keep all the found Pareto solutions in the population. Therefore,
an archive of non-dominated solutions is maintained. Case studies are
carried out on some of the test functions used in [1] and [2]. Simulation
results show that the proposed approaches are simple and effective.

1 Introduction

A large number of evolutionary multiobjective algorithms (EMOA) have been
proposed [3, 4]. So far, there are three main approaches to evolutionary multi-
objective optimization, namely, aggregation approaches, population-based non-
Pareto approaches and Pareto-based approaches [4]. In the recent years, the
Pareto-based approaches have gained increasing attention in the evolutionary
computation community and several successful algorithms have been proposed
[5].

Despite their weaknesses, the aggregation approaches are very easy to im-
plement and computationally efficient. Usually, aggregation approaches can pro-
vide only one Pareto solution if the weights are fixed using problem-specific
prior knowledge. However, it is also possible to find more than one Pareto so-
lution using this method by changing the weights during optimization. In [6],
the weights of the different objectives are encoded in the chromosome to obtain
more than one Pareto solution. Phenotypic fitness sharing is used to keep the
diversity of the weight combinations and mating restrictions are required so that
the algorithm can work properly.

Most of the EMOAs are based on Genetic Algorithms and relatively little
attention has been paid to evolution strategies. Some exceptions are [2, 7–9]. In
[7], average ranking is used to dictate the deletion of a fraction of the population.



A predator-prey-model is proposed in [9]. A selection method that is similar to
the VEGA approach [10] is adopted in [8]. An algorithm called Pareto Archived
Evolution Strategy (PAES) is suggested in [2], in which a non-Pareto approach
together with an archive of the found Pareto solutions are used.

This paper investigates two methods using the aggregation-based approach.
To approximate the Pareto front instead of a certain Pareto solution, the weight
for each objective should be changed systematically. One method is to dis-
tribute the weights uniformly among the individuals in the population. The
other method is to periodically change the weights with the process of the evo-
lution. Although these methods seem to be very simple, we will show that they
work effectively for two objective optimization problems. Simulations are car-
ried out on different test functions studied in [1, 2]. Different evolution strate-
gies, including the standard evolution strategy [11], the Evolution Strategy with
Rotation Matrix Adaptation [11] and the Evolution Strategy with Covariance
Matrix Adaptation [12, 13] are employed.

What is quite surprising from our simulation results is that our algorithms
work well even for problems with a concave Pareto front (see Section 4 for
details), which is usually thought to be not obtainable by aggregation based
methods [4]. Our preliminary explanation is that if the search algorithm goes
through the concave region of the Pareto front (which is locally near-optimal
when the objectives are aggregated into one single objective function) and if the
near optimal solutions are archived, then the Pareto solutions within the concave
region can also be found using the aggregation method. Further results on this
issue will be reported elsewhere.

2 The Aggregation Based Multiobjective Algorithms

2.1 The Evolution Strategies

In the standard Evolution Strategy (ES), the mutation of the objective parame-
ters is carried out by adding an N(0, σ2

i ) distributed random number. The step
sizes σi are also encoded in the genotype and subject to mutations. A standard
Evolution Strategy can be described as follows:

x(t) = x(t− 1) + z̃ (1)

σi(t) = σi(t− 1)exp(τ ′z)exp(τzi); i = 1, ..., n (2)

where x is an n-dimensional parameter vector to be optimized, z̃ is an n-
dimensional random number vector with z̃ ∼ N(0,σ(t)2), z and zi are normally
distributed random numbers with z, zi ∼ N(0, 1). Parameters τ , τ ′ and σi are
the strategy parameters, where σi is mutated as in equation(2) and τ , τ ′ are
constants as follows:

τ =

(

√

2
√
n

)−1

; τ ′ =
(√

2n
)−1

(3)



There are several extensions to the above standard ES. In our simulations,
an ES with Rotation Matrix Adaptation and an ES with Covariance Matrix
Adaptation as well as the standard ES are used to investigate the effective-
ness of the proposed multiobjective algorithms using different search strategies.
For the detailed description of the evolution strategies, please refer to [11, 12]
respectively.

Two main different selection schemes are used in evolution strategies. Sup-
pose there are µ and λ individuals in the parent and offspring population, usually
µ ≤ λ. One method is to select the µ parent individuals only from the λ offspring,
which is usually noted as (µ,λ)-ES. If the µ parent individuals are selected from
a combination of the µ parent individuals and the λ offspring individuals, the
algorithm is noted as (µ+ λ)-ES. In our study, the (µ, λ)-ES is adopted.

2.2 Random Distribution of Weights within a Population

For the sake of clarity, we consider the two objective problems in the current dis-
cussion; the extension to problems with more than two objectives is straightfor-
ward. For a conventional aggregation method, the fitness function is the weighted
sum of the two different objectives f1 and f2:

Fitness = w1f1 + w2f2, (4)

where w1 and w2 are two constants determined using a prior knowledge about
the problem. It is clear that by using a pair of fixed weights, only one Pareto
solution can be obtained.

Imagine that we run the algorithm so many times that every weight combi-
nation has been used. In this way, we can obtain all Pareto solutions that the
Pareto front consists of. Notice, that it has been argued that the Pareto solu-
tions locating in the concave region of the Pareto front cannot be obtained by
aggregation methods. However, in the experiments in Section 4, we found that
our algorithms are successful in obtaining a very complete concave Pareto front
for low dimensional problems (e.g. n = 2), and a quite complete concave Pareto
front with a dimension as high as 10.

Of course, it is unpractical, if not impossible to run the evolutionary algo-
rithm so many times to exhaust all the weight combinations. Since we are using
evolutionary optimization, it is natural to take advantage of the population for
this purpose. If the different weight combinations can be distributed among the
individuals, the population may be able to approach the Pareto front during
the process of evolution. Suppose we use the (µ, λ)-ES, then the weight combi-
nations can be distributed uniformly among the λ individuals in the offspring
population. Let

wi
1(t) = random(λ)/λ, (5)

wi
2(t) = 1.0− wi

1(t), (6)

where i = 1, 2, ..., λ and t is the index for generation number. The function
random(λ) generates a uniformly distributed random number between 0 and λ.
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Fig. 1. Determination of the weights: Random distribution.

In this way, we can get a uniformly distributed random weight combination (wi
1,

wi
2) among the individuals, where 0 ≤ wi

1, w
i
2 ≤ 1 and wi

1 + wi
2 = 1, refer also

to Fig.1, in which U(0, 1) denotes a uniform distribution. Notice that the weight
combinations are regenerated in every generation.

2.3 Generation-Based Periodical Variation of the Weights

The idea of a uniformly distributed weight combination can straightforwardly
be extended to a generation based approach. However, if we still use a random
weight combination, convergence of the evolutionary algorithm will be in ques-
tion. Therefore, instead of using a randomly distributed weight combination, we
use a weight combination that is changed gradually and periodically with the
process of the evolution. In this work, this is realized as follows:

w1(t) = |sin(2πt/F )|, (7)

w2(t) = 1.0− w1(t), (8)

where t is the number of generation and | · | gives the absolute value. We can
see from equation (7) that w1(t) changes from 0 to 1 periodically. The change
frequency can be adjusted by F . In our study, we set F = 400, which means
that in every 400 generations, w1 will change from 0 to 1 and then from 1 to 0
four times. Fig.2 shows an example of how the weights change during evolution
within 200 generations. We found that the results of the algorithm are not very
sensitive to F , although it seems reasonable to let the weight change from 0 to 1
twice. Notice in this case, all the individuals have the same weight combination
in the same generation.
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Fig. 2. Determination of weights: Generation-based periodical variation, all individuals
have the same weight combination within a generation.

2.4 An Archive of Pareto Solutions

In our algorithm, the population is not able to keep all the found Pareto solutions,
although it is able to approach the Pareto front dynamically. Therefore, it is
necessary to record the Pareto solutions that have been found so far. The idea of
building a Pareto archive is inspired from [2], although we use quite a different
method to aggregate and maintain the archive. The pseudo-code for building
the archive is listed in Algorithm 1. The similarity is measured by the Euclidean
distance in the fitness space. It should be noticed that it is possible for one
solution in the archive is dominated by another.

3 Test Functions

To evaluate the effectiveness of the proposed algorithms, simulations are carried
out on four test functions used in [1, 2].

– The first test function (F1) used here is the second function in [2] and we
extend it to an n-dimensional function:

f1 =
1

n

n
∑

i=1

x2
i (9)

f2 =
1

n

n
∑

i=1

(xi − 2.0)2 (10)

– The second test function (F2) is the first function in [1], which has a convex
Pareto front:

f1 = x1 (11)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (12)

f2 = g × (1.0−
√

f1/g) (13)

where xi ∈ [0, 1].



for each individual o in offspring population do

if (o dominates an individual in parent population p) and (o is not dominated
by any solutions in the archive) and (o is not similar to any solutions in the
archive) then

if archive is not full then

add o to the archive
else if o dominates any solution a in the archive then

replace a with o

else if any solution a1 in the archive dominates another solution a2 then

replace a2 with o

else

discard o

end if

else

discard o

end if

end for

for each solution in the archive do

if solution a1 dominates a2 then

remove a2

end if

end for

Algorithm 1: Pseudo-code for maintaining an archive of Pareto solutions.

– The third test function (F3) is the second function in [1], which has a concave
Pareto front:

f1 = x1 (14)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (15)

f2 = g × (1.0− (f1/g)
2) (16)

where xi ∈ [0, 1].

– The fourth test function (F4) is the third function in [1], whose Pareto front
consists of a number of separated convex parts:

f1 = x1 (17)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (18)

f2 = g × (1.0−
√

f1/g − (f1/g)sin(10πf1)) (19)

where xi ∈ [0, 1].



4 Case Studies

The goal of the simulations is to verify the effectiveness of the proposed algo-
rithms using three different evolution strategies. The first part of the simulation
is to demonstrate that both the random distribution of the weights among the
population (hereafter noted as Method 1) and the generation based periodical
variation of the weights (hereafter called Method 2) proposed in Section 2 are
able to approximate the Pareto front for different low-dimensional problems,
even for a concave Pareto front, which is usually considered to be impossible
by aggregation methods. Please refer to our comments in Section 1. The second
part of the simulation is intended to compare the effectiveness of Method 1 and
Method 2 for high-dimensional problems. It is found that Method 2 is more effec-
tive for finding a complete Pareto front. Finally, we also show that different ES
algorithms have different performance for multiobjective optimization with the
same fitness assignment method. From these comparative studies, we conclude
that the ES with Rotation Matrix Adaptation using Method 2 gives consistently
satisfying results on different kinds of problems.

In all the simulations, a (15, 100)-ES is used and the maximal number of
generation is 500.

4.1 Comparison of both methods for low dimensional problems

In this part, we use the standard ES for all the four test functions with dimension
n = 2. In the figures hereafter, the stars(’∗’) denote the archived solutions and
the plus signs (’+’) denote the individuals in the offspring population. Figures
3(a) and (b) show the archived solutions and the offspring in the 10th and 500th
generation, respectively, using Method 1 for F1. It is clearly seen that the pop-
ulation has successfully approximated the Pareto front. Figures 4, 5 and 6 show
the corresponding results for F2, F3 and F4 using Method 1. From the figures,
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Fig. 3. Method 1 for F1 (n=2) using the standard ES: (a) generation 10, (b) generation
500.
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Fig. 4. Method 1 for F2 (n=2) using the standard ES: (a) generation 10, (b) generation
500.
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Fig. 5. Method 1 for F3 (n=2) using the standard ES: (a) generation 10, (b) generation
500.

we find that Method 1 is working effectively for all different test functions, which
shows that the idea of using a uniformly random weight distribution among the
individuals of the population is for multi-objective optimization feasible.

Next, we run simulations on all four test functions with n = 2 using Method
2. The results are shown in Figures 7, 8, 9 and 10.

From these figures, it is demonstrated that Method 2 has been successful in
obtaining a very complete Pareto front for all the four test functions. The differ-
ence between Method 1 and Method 2 is that the individuals in the population
in Method 2 converged more completely to the Pareto front than the individuals
in Method 1 at the end of the evolution.

The most interesting fact is that both methods have obtained very complete
Pareto solutions for F3, which has a concave Pareto front. Our empirical results
show that in principle, concave Pareto solutions can be obtained by aggregation
methods if the search algorithm is able to go through the concave region and if
an archive is used to store the found Pareto solutions.
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Fig. 6. Method 1 for F4 (n=2) using the standard ES: (a) generation 10, (b) generation
500.
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Fig. 7. Method 2 for F1 (n=2) using the standard ES: (a) generation 10, (b) generation
500.

4.2 Comparison of both methods for high dimensional problems

The performance of Method 1 and Method 2 is compared in this part of the
simulations. The purpose of the simulations is to investigate the efficiency of
Method 1 and Method 2 for more complex problems. In the results presented in
the following, the standard ES is used for the four test functions with a dimension
of 10 and 500 generations are run. Figures 11 and 12 give the results using
Method 1. It can be seen that the performance of Method 1 on 10-dimensional
problems becomes worse compared to those obtained in the two dimensional
problems. In contrast, Method 2 is still able to provide very good results on the
same problems, as shown in Figures 13 and 14. Notice that Method 1 shows
particularly bad performance on test functions F3 and F4, which have a concave
or discontinuous Pareto front. However, Method 2 shows quite good performance
on all the four test functions.

4.3 Comparison of different evolution strategies for Method 2

This part of the simulation aims at comparing the performance of different ES
algorithms for more difficult problems (with higher dimension in this context).
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Fig. 8. Method 2 for F2 (n=2) using the standard ES: (a) generation 10, (b) generation
500.
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Fig. 9. Method 2 for F3 (n=2) using the standard ES: (a) generation 10, (b) generation
500.

Since Method 2 exhibits much better performance in the above part of experi-
ments, only Method 2 will be used in the following simulations. The algorithms
considered in this work are the standard ES, the ES with Rotation Matrix Adap-
tation and the ES with Covariance Matrix Adaptation. The problems studied
in this part of the simulation are the four test functions with n = 30. Results
using the standard ES on the four functions are shown in Figures 15 and 16.
The results using the ES with Rotation Matrix Adaptation are given in Figures
17 and 18. Finally, the ES with Covariance Matrix Adaptation is tested and the
results are presented in Figures 19 and 20. In all the simulations, 500 generations
are run. As it is shown in the above figures, the standard ES together with
Method 2 can always provide quite a complete Pareto front, but unfortunately,
the accuracy of the solutions is not satisfactory. On the other hand, the ES with
Rotation Matrix Adaptation gives consistently good results on all the four prob-
lems, which are comparable to or even better than those of the Pareto-based
algorithms described in [1]. Interestingly, the ES with CMA produced very good
results on F1, but failed on F3 and F4. This may be ascribed to the fact that the
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Fig. 10. Method 2 for F4 (n=2) using the standard ES: (a) generation 10, (b) Gener-
ation 500.
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Fig. 11. Method 1 using the standard ES for (a) F1 (n=10) and (b) F2 (n=10)

ES with CMA is a more deterministic algorithm that converges quickly before
it can explore a wider region of the search space.

At the same time, as for the low dimensional problems studied in Section
4.1 of this section, the ES with RMA is able to obtain a quite complete concave
Pareto front with the dimension of 30. This was surprising taking into account
the fact that it is a simple, dynamic aggregation based approach.

5 Conclusion

Two aggregation based methods for multiobjective optimization are proposed in
this paper. The idea is to use dynamic weights instead of fixed weights to achieve
the Pareto solutions. We found that both methods work well on low-dimensional
problems. However, for high-dimensional problems, the second method outper-
forms the first one. Furthermore, the simulation results also depend on the type
of evolution strategy that is employed. On the other hand, it also depends on the
performance of the evolution strategy. In our experiment, the Evolution Strategy
with Rotation Matrix Adaptation gives better performance than the standard
Evolution Strategy. At the same time, the Evolution Strategy with Covariance
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Fig. 12. Method 1 using the standard ES for (a) F3 (n=10) and (b) F4 (n=10)
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Fig. 13. Method 2 using the standard ES for (a) F1 (n=10) (b) F2 (n=10)

Matrix Adaptation provides very good results on smooth, high-dimensional prob-
lems, but its performance degrades seriously on problems with a discontinuous
and non-convex Pareto-optimal front.

In our approach, no changes have to be made to the conventional evolutionary
algorithm except for the dynamic weights and an archive of the found Pareto
solutions. Therefore, the methods can straightforwardly be applied to all existing
evolutionary algorithms with only minor modifications.

Another interesting phenomenon is that the proposed algorithms are able to
find the Pareto solutions with a concave Pareto front. This is a very encourag-
ing point when we are applying aggregation-based methods to multi-objective
optimization. Further investigation of this issue will be part of our future work.

The problems studied in this paper are all two-objective ones. Theoretically,
the proposed methods can be extended to problems with more than two ob-
jectives. Expected problems are the increasing complexity and the decreasing
efficiency, which, however, is also true for the Pareto-based approaches.
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Fig. 14. Method 2 using the standard ES for (a) F3 (n=10) and (b) F4 (n=10)
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Fig. 15. Method 2 using the standard ES for (a) F1 (n=30) and (b) F2 (n=30)

References

1. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolution algo-
rithms: empirical results. Evolutionary Computation, 8(2):173–195, 2000.

2. J. D. Knowles and D. W. Corne. Approximating the nondominated front using
the Pareto archived evolution strategies. Evolutionary Computation, 8(2):149–172,
2000.

3. C.A.C. Coello. A comprehensive survey of evolutionary-based multiobjective op-
timization techniques. Knowledge and Information Systems, 1(3):269–308, 1999.

4. C. M. Fonseca and P. J. Fleming. Multiobjective optimization. In Th. Bäck, D. B.
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Fig. 16. Method 2 using the standard ES for (a) F3 (n=30) and (b) F4 (n=30)
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Fig. 18. Method 2 using the ES with RMA for (a) F3 (n=30) and (b) F4 (n=30)
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Fig. 19. Method 2 using the ES with CMA for (a) F1 (n=30) and (b) F2 (n=30)
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Fig. 20. Method 2 using the ES with CMA for (a) F3 (n=30) and (b) F4 (n=30)


