
 

 

 

  

Abstract— In both numerical and stochastic optimization 

methods, surrogate models are often employed in lieu of 

the expensive high-fidelity models to enhance search 

efficiency. In gradient-based numerical methods, the 

trustworthiness of the surrogate models in predicting the 

fitness improvement is often addressed using ad hoc 

move limits or a trust region framework (TRF). Inspired 

by the success of TRF in line search, here we present a 

Trusted Evolutionary Algorithm (TEA) which is a 

surrogate-assisted evolutionary algorithm that exhibits 

the concept of surrogate model trustworthiness in its 

search. Empirical study on benchmark functions reveals 

that TEA converges to near-optimum solutions more 

efficiently than the canonical evolutionary algorithm. 

 

I. INTRODUCTION 

ver the last decades, Evolutionary Algorithms (EAs) 

have gained significant interest in diverse areas, 

including various complex real-world applications, such as 

aerodynamic airfoil design [1], rotor blade design [2], 

scheduling [3], art design [4], and flexible space structure 

design [5]. Their success and popularity lie in their ease of 

implementation and the ability to locate close to the global 

optimum designs even on problems with discontinuous 

surfaces. As a stochastic multi-point search strategy, EA 

often engages enormous fitness function evaluations before 

converging to near optimum solutions. In many complex 

systems, each fitness evaluation may require the simulation 

of the high-fidelity analysis codes, such as Finite Element 

Analysis (FEA), Computational Fluid Dynamics (CFD), etc., 

that can varies from minutes to hours of supercomputing 

time. Hence, the use of EAs often becomes computationally 

prohibitive for this class of problems. To enhance the 

computational efficiency of standard EAs, it is now 

becoming standard practice to employ computationally 

cheap surrogate models in place of original fitness function 

which is computationally expensive. A variety of techniques 

for the constructions of surrogate model, often also referred 

to as surrogate model, meta-models or approximation 
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models, have been used in engineering design optimization. 

Among these techniques, Polynomial Regression (PR, also 

known as response surface method) [6-8], Artificial Neural 

Network (ANN), Radial Basis Function (RBF) [9-10], and 

Gaussian Process (GP) (also referred to as Kriging or Design 

and Analysis of Computer Experiments (DACE) models) 

[11-13] are the most prominent and commonly used 

techniques.  

Over the recent years, there has been increasing interests 

on the development of new EA frameworks that employ a 

diverse of surrogate models for solving computationally 

expensive problems under a limited computational budget. 

Hence, there are now various ways to integrate surrogate 

models into an evolutionary search. In [11], Ratle proposed a 

strategy for integrating GA with kriging approximation 

model and uses a heuristic convergence criterion to decide 

when the model should be updated. El-Beltagy et. al. [14] 

extends the work by considering the issue of balancing the 

concerns of optimization with those of Design of 

Experiments (DOE). Jin et. al. proposed the coupling of ES 

with neural network models in [15]. The concept of 

“generation control” and “individual control” in the 

evolutionary search was introduced. Further, some empirical 

criteria for switching between the exact fitness function and 

approximate models throughout the EA search are provided. 

Other strategies using GP and the idea of pre-selecting 

portions of the EA population that undergoes exact fitness 

evaluations were also considered in [16] and [17]. A recent 

survey paper that outlines some of the fitness approximation 

models and data sampling techniques typically used in 

evolutionary computation can also be found in [18].  

In gradient-based methods, such as conjugate-gradient, 

quadratic programming, and steepest descent methods, the 

trustworthiness of the surrogate models in predicting fitness 

improvement or controlling approximation errors is typically 

addressed using ad hoc move limits or a trust region 

framework. The classical trust region framework (TRF) was 

proposed for managing quadratic Taylor series model in line 

search [19] and subsequently extended for generalized 

approximation models [20]. The success of the TRF lies in 

its ability to predict fitness improvement in the optimization 

by adaptively controlling the move limits and further 

guarantees global convergence under mild assumptions on 

the accuracy of the surrogate model. In contrast, since EAs 

make use of probabilistic recombination operators, 

controlling the step size of design changes (to control the 

accuracy of approximate fitness predictions) is not as 

straightforward as in gradient-based optimization algorithms.  
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To date, there have been some notable works on 

integrating trust region theory into EA. In [21], Ong et. al. 

propose a surrogate assisted memetic algorithm for solving 

optimization problems with computationally expensive 

fitness function and general constraints, on a limited 

computational budget. The essential backbone of the 

framework is an evolutionary algorithm coupled with a trust 

region managed feasible sequential quadratic programming 

solver in the spirit of Lamarckian learning. The TRF is used 

for interleaving use of exact models for the objective and 

constraint functions with computationally cheap surrogate 

models during local search. Extensions to enhance search 

efficiency and approximation accuracy using gradient 

information and multi-level surrogates were also considered 

in [22] and [13] recently. Inspired by the success of trust 

region theory in line search and memetic algorithm, we 

present a Trusted Evolutionary Algorithm (TEA) for solving 

optimization problems with computationally expensive 

fitness functions in this paper. A trusted surrogate-assisted 

evolutionary algorithm or TEA in short is proposed and 

investigated. In particular, TEA is designed to maintain good 

trustworthiness of the surrogate models in predicting fitness 

improvement or controlling approximation errors throughout 

the evolutionary search.  

The remaining of this paper is organized as follows. 

Section 2 provides a brief discussion on the classical trust 

region framework for regulating a surrogate-assisted 

numerical method. In section 3, we present the Trusted 

Evolutionary Algorithm (TEA) proposed for solving 

optimization problems with computationally expensive 

fitness functions. Section 4 presents our empirical study on 

two highly multi-modal benchmark functions for both low 

and high dimensions. Numerical comparisons to the 

canonical EA and TRF are also reported in the same section. 

Finally, Section 5 concludes this paper.  

II. TRUST REGION THEORY IN NUMERICAL OPTIMIZATION 

In this section, we present an overview on the trust 

region theory [23] for numerical optimization. Without loss 

of generality, we consider the general bound constrained 

nonlinear programming problem of the form: 
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where )(xf
�

is a scalar-valued objective function, nx ℜ∈
�

is 

the vector of design variables, while lx
�

 and ux
�

are vectors 

of lower and upper bounds for the design variables.  

The classical trust region approach starts from a random 

initial guess to build a quadratic model using Taylor series 

approximation given by:  
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where )(
k

bxf  represents the original fitness value of the 

initial guess, 
k

bx  . d
�

 is any arbitrary step from 
k

bx .  kg  

represents the approximated gradient )(
k

bxf∇  while kH is 

the approximated second derivative of the exact fitness 

function. The trust region approach then proceeds with a line 

search in the region bounded by k∆
�

 in equation (3) to locate 

the locally optimum point 
k
optx
�

 by solving: 
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In every iteration, k, the exact value of the fitness 

function, ( )k
optxf
�

, is used to compute the figure of merit, kρ : 
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kρ  provides a ratio of the exact to predicted change in the 

fitness value at the k
th
 iteration. Using kρ , the trust radius, 

k∆ , is then updated in the following manner: 
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Typical configurations for c1, c2, r1, r2 are defined as 0.25, 

1.0, 0.25, and 0.75, respectively. Further, c3 is set to 2 if 

||
k
b

k
opt xx

��

−  || ∞  =
k∆  or unity when ||

k
b

k
opt xx

��

−  ||∞  <
k∆ . The 

reader is referred to [19] and [20] for the details on how 

these values are obtained heuristically.  

In summary, the decision to contract or expand the trust 

radius depends on the ability of approximation model in 

predicting fitness improvements. If excellent search 

improvement is attained within the current search region, it 

makes sense for one to be more adventurous by expanding 

the trust radius. On the other hand, when search 

improvement is only moderate, the same trust radius is 

maintained. Otherwise, the region in which the model is 

considered to be trustworthy is reduced since it is well-

defined that approximation accuracy improves at region 

closer to bx
�

 for a quadratic model. The search then proceeds 

to start from the optimized solution, 1+k
bx
�

, or restarts from 

the previous solution 
k

bx
�

 depending on kρ  as follows: 
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In the engineering literatures, there exist a variety of 

techniques for constructing approximation models that 

produce more accurate prediction than quadratic model 

particularly on problems with complex surfaces [24-25]. To 

accommodate the plethora of modeling techniques, 

Alexandrov et al. extended the classical trust region theory 

for general approximation model in [20]. It was also shown 

in [20] that the global convergence of the trust-region 

framework is ensured when the zero-order and first-order 

consistency conditions are imposed at the initial guess, i.e., 

)()(ˆ
k

b

k

b xfxf =  and ˆ ( ) ( )
k k
b bf x f x∇ = ∇
� �

. The generalized 

trust region framework (TRF) is outlined in Figure 1.  

 

 
Fig. 1. Trust Region Framework for generalized approximation models. 

III. TRUSTED EVOLUTIONARY ALGORITHM 

In this section, we propose a trust-region inspired 

evolutionary search for solving optimization problems 

having computationally expensive fitness functions, which 

we label as the Trusted Evolutionary Algorithm (TEA).  

Here, we would like to highlight the conceptual 

difference between TEA and other surrogate-assisted EA 

(SAEA). It is worth noting that existing SAEA focuses 

generally on approximation quality of the surrogate model 

used in the evolutionary search. Due to the curse of 

dimensionality, global models are increasingly difficult to 

construct for problems with large number of variables. As a 

result, many recent SAEA frameworks [21][26] have opted 

for local over global models to enhance approximation 

quality. In contrast, we are more interested in predicting 

search improvement in the context of optimization as 

opposed to the quality of the approximation, which is a 

regarded as a secondary objective.  

The pseudo code of the proposed TEA is outlined in 

Figure 2. For the sake of readability, we present the 

algorithm in two main phases, i.e., the initialization and 

search phases.  

 

 
 

Fig. 2. The Trusted Evolutionary Algorithm 

 

TEA begins its search using the canonical EA, i.e. EA 

with only exact function evaluations. During the canonical 

EA search, the exact fitness values obtained are archived in a 

central database together with the design vectors. After some 

initial search generations specified by the user, the algorithm 

proceeds by initializing the trust radius n∆∆∆=∆ ...,,2,1

�

. 

Here, the trust radius for dimension j is initialized as 

( )minmax
,min djbjbjdjj xxxx −−=∆ , where 

max
djx and 

min
djx  are 

Begin TEA 

Initialization Phase: 

• Perform canonical EA for some initial generations until a 

database of sufficient design vectors/fitness values are 

archived for surrogate modeling. 

• Choose m nearest points to current best point, bx
�

. 

• Determine initial trust radius, n∆∆∆=∆ ...,,2,1

�

  

( )max minmin ,j bj bj djdj
x x x x∆ = − − , j=1,2,…,n.  n denotes 

the dimensionality, dx
�

 represents points in the central 

database. 

 

Search Phase: 

• While (search termination conditions not met) 

o Create approximation model using m nearest points to 

bx
�

from the database. 

o Create offspring X= { }λxxx
���

,...,2,1  from parent bx
�

 using 

evolutionary operator, i.e. mutation. 

o Find the optimal solution 
opt

x
�

 for t search iterations 

using the approximation model, by solving the sub-

problem: 

       Minimize: ( )xf̂  

            Subject to: ∆+≤≤∆−
�
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�

�

bb xxx  

o Evaluate 
opt

x
�

 using exact fitness function and archive it 

in the central database together with the design vector. 

o Determine the figure of merit, ρ . 
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• End while 

End TEA 

Begin TRF 

• Set initial guess of best point, 
0
bx
�

. 

• Set k=0 

• While termination condition is not met: 

o Build a local approximation model around 
0
bx
�

. 

o Find the optimal solution in the approximation model, 

by solving the sub-problem: 

Minimize: 





 + dxf
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o Compute the figure of merit, 
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o Update 
1+k

bx
�

 and 1+∆k
�

  according to 
kρ . 

o k=k+1. 

• End while 

End TRF 
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the maximum/minimum bounds of the m nearest points in the 

database to the current best point, bx
�

. This makes good 

sense since the region in which the m points lie is regarded 

as the most trustworthy region where the search begins. 

To provide a clear illustration on the search mechanisms 

of TEA, we use the Ackley benchmark function which is 

defined by: 
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Figures 3(a)-(d) demonstrate the search process of TEA 

on the 2D Ackley function. The EA 1 search begins from the 

best solution provided by the canonical ES, 
1

bx
�

, which is 

labeled in Figure 3(a) as point A. After t iterations, the EA  

using the surrogate model for fitness evaluations converges 

to new solution 
1

optx
�

 or point B in Figure 3(a).  We consider 

the event of ( ) ( )11 ˆˆ
bopt xfxf
��

≤  for a minimization sub-

problem and ( ) ( )11

bopt xfxf
��

≤ , i.e., surrogate is guiding the 

EA  search in the correct direction leading to good search 

improvement, see Figure 3(a). Consider also that ρ>0.75, the 

trust radius 2∆
�

 for the next iteration remains unchanged 

since 
1

optx
�

 or point B falls within the boundary of the trusted 

region, i.e. ||
11

bopt xx
��

−  ||∞  <
1∆
�

.  Starting from the newly 

found point B or 
2

bx
�

, the EA  search converges to point C or 

2

optx
�

, see Figure 3(b). However, since ( ) ( )22

bopt xfxf
��

>  

and ρ<0, trust radius ∆
�

 is thus reduced as the present 

surrogate displays low trustworthiness for the current search 

bound. Consequently, the search restarts from point B within 

the reduced ∆
�

 as depicted in Figure 3(c). In the condensed 

region, EA  converges subsequently to the new point D in 

Figure 3(d). Since the boundary of the trusted region is 

reached, i.e. ||
22

bopt xx
��

− ||∞  =
2∆
�

 and considering that ρ>0.75, 

which suggests high trustworthiness in the surrogate to 

produce search improvements, ∆
�

 is thus expanded in the 

next search iteration, i.e., 23 ∆>∆
��

. Thereafter, the search 

continues from point D and the process repeats until the 

termination conditions of the TEA are reached. 

 

 

 
1 EA  refers to an EA that employs surrogate models for providing the 

fitness values on the population. 

 
 

 

(a)  Starting from initial guess 
1

bx
�

or point A, the EA  search converges 

to
1

optx
�

or point B where ( ) ( )11

bopt xfxf
��

< . By assuming that ρ>0.75, 

∆
�

 is kept unchanged in the next iteration in the event that ||
11

bopt xx
��

−  ||∞  

<
1∆
�

. 

 

 

 

 

 

 
 

(b) Starting from initial guess 
2

bx
�

 or B, the EA  search converges to 

2

optx
�

 or point C. Since ( ) ( )22

bopt xfxf
��

> , ρ <0 and hence ∆
�

 is 

reduced in the next iteration. 
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(c) Starting from initial guess 
2

bx
�

 or point B, the EA  search converges to 

2

optx
�

 or point D and ( ) ( )22

bopt xfxf
��

> . By assuming ρ>0.75, ∆
�

 is 

increased in the next iteration. 

 

 

(d) The EA  search starts from initial guess 
3

bx
�

or point D with the 

increased trust radius. 

 
Fig. 3. Search pattern of TEA on the 2D Ackley function. 

IV.  EMPIRICAL STUDY 

In this section, we perform a numerical investigation of 

TEA and compare it to the canonical ES and original trust 

region line search framework. In particular, two multi-modal 

benchmark problems commonly used in the global 

optimization literature are adopted. The Ackley function is 

defined previously in equation (7) while the Griewank 

function is defined here as: 
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Here, the variable search bounds are set to [-10,10] and 

[-600,600] for the Ackley and Griewank functions, 

respectively.  The global minimum for both functions is 

( ) 0.0=xf
�

 and located at 0.0=ix for { }ni ,...,2,1∈ where n 

is the dimensionality of the function.  

In our experimental study, the initialization phase is 

conducted until a collection of 2m design points in the 

central database is reached. m is the number of training 

points used in the construction of the surrogates. Further, we 

consider radial basis neural network surrogates, which can 

approximate multiple-input multiple-output data efficiently, 

particularly when a few hundred data points are used for 

training. Let  ( ){ }m,...,,i,xf,x ii 21=
��

 denotes the training 

dataset, consists of m data pairs, where ix
�

 is the input vector 

and )( ixf
�

is the corresponding output. Since, we are 

concerned with deterministic computer models, interpolating 

RBF approximation model of the following form is used. 
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where ( ) ℜ→ℜ− d
i :xxK
��

 is a radial basis kernel and 

{ }m,, ...,αααα 21=  denotes the weight vector. Typical choices 

for the kernel include linear splines, thin-plate splines, cubic 

splines, Gaussian and multiquadric functions [24]. Here we 

consider the use of cubic splines for constructing surrogate 

models since earlier studies [27] suggests that both cubic and 

thin plate splines kernels are capable of providing models 

with good generalization capability at a low computational 

cost on high dimensional problems.  

A. Comparison to Canonical ES 

The average performance of the (1,10)-TEA and 

canonical (1,10)-ES from 10 independent runs for solving 

the benchmark test functions are summarized in Table 1 for 

dimensionalities n=5, 10, 15, and 20. These results are 

obtained based on the configurations of m=200, t=40, and 

for a maximum computational budget of 1000 exact function 

evaluations. Note that t is denoted here as the number of EA  

search iterations before the figure of merit, ρ , is measured to 

evaluate the trustworthiness of the trust radius and 

approximation model in generating fitness improvement (see 

Figure 2).  The result reported in table 1 clearly indicates 

that TEA outperforms the canonical ES on both multi-modal 

benchmark problems for various dimensions under limited 

computational budget. 
 

 

TABLE I 

AVERAGE BEST FITNESS VALUES OBTAINED AT THE END OF 1000 EXACT 

FUNCTION EVALUATIONS FOR ACKLEY  

AND GRIEWANK FUNCTIONS FOR TEA AND ES 

 

Function 

 

Dimensionality 

(n) 

TEA ES 

Ackley 5 0.0741 0.7453 

 10 0.0945 1.9391 

 15 0.8342 2.7053 

 20 1.3703 3.8035 

  x  D 

  x D 

    B x 
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Griewank 5 0.0360 0.2165 

 10 0.0751 0.2993 

 15 0.0805 1.0443 

 20 0.1686 1.2255 

 

Further, we also study the effect of the additional 

parameters, i.e. m and t, on the performance of TEA.  With t 

fixed at 40, we consider first the effect of training sample 

size. The averaged fitness values of (1,10)-ES and (1,10)-

TEAs for m=100 and m=200 are summarized in Figure 4(a) 

and 4(b). From these figures, TEA is observed to fare poorer 

than the canonical ES on the 15D and 20D Ackley function 

when insufficient training points are employed, i.e. for 

m=100, resulting in inaccurate approximation models and 

poor search improvements. Note that the effect is more 

obvious on the higher dimensional problems, due to the 

effect of ‘curse of dimensionality’. In contrast, TEA always 

outperforms the canonical ES in all parameter configurations 

considered on the Griewank function. In this case, the less 

accurate approximation for m=100 appears to generalize or 

smooth the multi-modality surface of the Griewank function 

pretty successfully, leading to excellent search performance 

in TEA. 
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Fig. 4. Best fitness values obtained at the end of 1000 exact fitness 

evaluations for TEA m=100, 200, and canonical ES on: (a) Ackley, (b) 

Griewank benchmark functions. 

In the same manner, we fixed m at 200 to identify some 

suitable values for t. The averaged fitness values of (1,10)-

ES and (1,10)-TEAs for t=10, 20, 40, and m=200 are 

reported in Figure 5(a) and 5(b) when searching on the 

benchmark functions. From these results, TEA is shown to 

provide the best quality solution when t=40 and m=200 on 

both benchmark problems of diverse dimensionalities.  
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Fig. 5. Best fitness values obtained at the end of 1000 exact fitness 

evaluations for TEA t=10, 20, 40, and canonical ES on: (a) Ackley, (b) 

Griewank benchmark functions. 

 

B. Comparison to Original Trust Region Line Search 

Framework 

In this subsection, we evaluate the performance of the 

TEA against the original trust region framework for line 

search (TRF). For this purpose, we configure TEA for 

m=200, t=40, and computational budget of 1000 fitness 

evaluations. For fair comparison, TRF is configured to begin 

its search with a randomly generated database of 400 

evaluated points, m=200 and maximum of (1000-400)=600 

search iterations. Hence, the total computational budget is 

for both algorithms are 1000 fitness evaluations.   

In the TRF, the gradient-based local solver is based on the 

Feasible Sequential Quadratic Programming (FSQP) [28] 
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that employs cubic RBF models. The average search 

performance of (1,10)-TEA and TRF across 10 independent 

runs for solving two 20-dimensional benchmark problems 

are summarized in Table 2. It is shown from the results 

tabulated that TEA outperforms TRF significantly on the 

20D Ackley function while slightly poorer on the 20D 

Griewank function, even when no form of gradient 

information have been used in the former. Further, the results 

in Table 2 also suggest that TRF is vulnerable to getting 

stuck at some local minima on the Ackley function, i.e., 5/10 

independent runs in TRF, compared to only 1/10 in TEA, 

(see the italic values in Table 2). 

 
TABLE 2 

BEST FITNESS VALUES OBTAINED AT THE END OF 1000 EXACT FUNCTION 

EVALUATIONS FOR ACKLEY  

AND GRIEWANK FUNCTIONS FOR TEA AND TRF 

 

Trial Ackley 

20D 

TEA 

Ackley 

20D 

TRF 

Griewank 

20D TEA 

Griewank 

20D TRF 

1 0.4172 2.9125 0.0321 0.0005 

2 1.4827 3.1694 0.0401 0.0014 

3 0.8310 8.5273 0.0235 0.2761 

4 2.1603 4.2022 0.1281 0.0012 

5 0.7056 2.6362 0.2766 8.37x10-5 

6 0.7352 9.0514 0.1692 6.61 x10-5 

7 0.6281 2.6354 0.1562 0.0006 

8 4.6948 3.9832 0.0255 0.2845 

9 1.3253 3.4658 0.0025 0.5358 

10 0.7224 2.4438 0.8316 0.1170 

Mean (µ) 

 

1.3703 4.3027 0.1686 0.1217 

Standard 

deviation (σ) 

1.2127 

 

2.3117 0.2360 

 

0.1760 

 

 

V. CONCLUSION 

In this paper, a trust-region inspired evolutionary search 

or the Trusted Evolutionary Algorithm (TEA) is presented. 

In contrast to earlier work, the focus of TEA is on predicting 

search improvement in the context of optimization as 

opposed to the quality of the approximation, which is a 

treated here as a secondary objective. Empirical study 

conducted using two benchmark functions shows that the 

proposed TEA converges to better solution than 

conventional evolutionary search under a limited 

computational budget. In addition, it is worth noting that the 

present work has considered only the use of zero order 

approximation models. In our future work, novel TEA that 

employs more sophisticated models, for example, first and 

second order models, will be considered. 

VI. ACKNOWLEDGEMENT 

D. Lim and Y.S. Ong would like to thank Honda 

Research Institute Germany for funding this research work, 

and members of Nanyang Technological University for 

providing computing support and resources to make this 

work possible.  

REFERENCES 

 

[1] M.K. Karakasis, A.P. Giotis, and K.C. Giannakoglou, “Inexact 

information aided, low-cost, distributed genetic algorithms for 

aerodynamic shape optimization”, International Journal for 

Numerical Methods in Fluids, vol. 43, pp. 1149–1166, 2003. 

[2] P. Hajela, J. Lee, “ Genetic algorithms in multidisciplinary rotor blade 

design”, In Proceedings of 36th AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics and Material Conference, New 

Orleans, pp. 2187-2197, 1995.                                                                                                                                                                                                              

[3] H. Fang, P. Ross, and D. Corne, “A Promising Genetic Algorithm 

Approach to Job-shop Scheduling, Rescheduling and open-shop 

scheduling problems”, Proceedings of the 5th International 

Conference on Genetic Algorithms, ICGA-93. Morgan Kaufmann, 

1993.                                                                                                                                                                               

[4] C.G. Johnson and J.J.R. Caldalda, “Introduction: Genetic Algorithms 

in Visual Art and Music”, Leonardo - Volume 35, Number 2, April 

2002, pp. 175-184.                                                                                                                                                                                                                                                                                   

[5] P.B. Nair, A.J. Keane, “Passive Vibration Suppression of Flexible 

Space Structures via Optimal Geometric Redesign”, AIAA Journal 

39(7), pp. 1338-1346, 2001.                                                                                                                                                                 

[6] F.S. Lesh, “Multi-dimensional least-square polynomial curve fitting”, 

Communications of ACM, vol. 2, no. 9, pp. 29-30, 1959.                                                                                  

[7] Z. Zhou, Y.S. Ong, M.H. Nguyen, D. Lim, “A Study on Polynomial 

Regression and Gaussian Process Global Surrogate Model in 

Hierarchical Surrogate-Assisted Evolutionary Algorithm”, IEEE 

Congress on Evolutionary Computation, Edinburgh, United 

Kingdom, September 2-5, 2005.                                                                                                             

[8] A.A. Guinta and L. Watson, “A comparison of approximation 

modelling techniques: polynomial versus interpolating models”, in 

Proc. the 7th AIAA/ USAF/ NASA/ ISSMO Symposium on 

Multidisciplinary Analysis and Optimization, AIAA-98-4758, St. 

Louis, MO, USA, Sept. 1998.                                                                                                                

[9] L. Gräning, Y. Jin, B. Sendhoff, “Efficient Evolutionary Optimization 

Using Individual-based Evolution Control and Neural Networks: A 

Comparative Study”, Proceeding of European Symposium on 

Artificial Neural Networks (ESANN), Bruges (Belgium), 27-29 April 

2005.                                                                                                                                                         

[10] L. Willmes, T. Bäck, Y. Jin, and B. Sendhoff, “Comparing Neural 

Networks and Kriging for Fitness Approximation in Evolutionary 

Optimization”, In Proceedings of IEEE Congress on Evolutionary 

Computation, pages 663--670, 2003.                                                                                                                                                                                                                                   

[11] A. Ratle, “Kriging as a surrogate fitness landscape in evolutionary 

optimization”, Artificial Intelligence for Engineering Design Analysis 

and Manufacturing, vol. 15, no. 1, pp. 37-49, 2001.                                                                                                                                                                                                                                                                                            

[12] D. Büche, N.N. Schraudolph, and P. Koumoutsakos, “Accelerating 

evolutionary algorithms with gaussian process fitness function 

models”, IEEE Transactions on Systems, Man, and Cybernetics part 

C, 2004.                                                                                                                                                                                                                                                                                 

[13] Z. Zhou,  Y.S. Ong, P.B. Nair, A.J. Keane, and K.Y. Lum, 

“Combining Global and Local Surrogate Models to Accelerate 

Evolutionary Optimization”, IEEE Transactions on Systems, Man 

and Cybernetics (SMC), part C, In press, expected July 2006.                                                                       

[14] M.A. El-Beltagy, P.B. Nair, A.J. Keane, “Metamodelling Techniques 

For Evolutionary Optimization of Computationally Expensive 

Problems: Promise and Limitations”, Proceeding of the Genetic and 

Evolutionary Computation Conference, 1999. 

[15] Y. Jin, M. Olhofer, B. Sendhoff, “A Framework for Evolutionary 

Optimization with Approximate Fitness Function”, IEEE 

Transactions on Evolutionary Computation, Vol. 6, No. 5, October 

2002.                                                                                                                                                                                                                                                                                       

[16] H. Ulmer, F. Streichert and A. Zell, “Model-assisted Evolution 

Strategies”, In Y. Jin, editor, Knowledge Incorporation in 

Evolutionary Computation, pages 333--357. Springer, Berlin, 2004.                                                           

462



 

 

 

[17] H. Ulmer, F. Streichert, and A. Zell, “Evolution strategies assisted by 

Gaussian processes with improved pre-selection criterion”, 

Proceedings of IEEE Congress on Evolutionary Computation, pp. 

692-699, 2003.                                                                                                                                                                                                                                                                     

[18] Y. Jin and B. Sendhoff, “Fitness approximation in evolutionary 

computation: A survey”, Proceedings of the Genetic and 

Evolutionary Computation Conference, pp. 1105-1112, 2002.                                                                                                                                                                                                                                                                                                         

[19] J.E. Dennis, V. Torczon, “Managing Approximation Models in 

Optimization and Nonlinear Equations”, Prentice Hall, Anglewood 

Cliffs, NJ, 1983. 

[20] N.M. Alexandrov,  J.E. Dennis, R.M. Lewis, and V. Torczon, “A 

Trust Region Framework for Managing Use of Approximation 

Models in Optimization”, Journal on Structural Optimization, Vol. 

15, No. 1, pp. 16-23, 1998.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

[21] Y.S. Ong, P.B. Nair, and A.J. Keane, "Evolutionary Optimization of 

Computationally Expensive Problems via Surrogate Modeling",  AIAA 

Journal, Vol. 41, No. 4, pp 687-696, 2003.                                                                                                                                                                                                                                 

[22] Y.S. Ong, P.B. Nair, K.Y. Lum, “Evolutionary Algorithm with 

Hermite Radial Basis Function Interpolants for Computationally 

Expensive Adjoint Solvers”, Computational Optimization and 

Applications, conditionally accepted, 2005.  

[23] J. Morè, “Recent Developments in Algorithms and Software for Trust 

Region Methods”, Mathematical Programming. The State of Art, 

Bonn 1982, Bachem A., Grotschel, and Korte B., eds., Springer-

Verlag, Berlin, 1983, pp. 258-287. 

[24] V. Vapnik, “Statistical Learning Theory”, John Wiley and Sons, NY, 

1998. 

[25] C. Bishop, “Neural Networks for Pattern Recognition”, Oxford 

University Press, 1995.        

[26] K.C. Giannakoglou, “Design of Optimal Aerodynamic Shapes Using 

Stochastic Optimization Methods and Computational Intelligence”, 

International Review Journal Progress in Aerospace Sciences, vol. 

38, No. 5, pp. 43-76, 2002. 

[27] H.M. Gutmann, “On the Semi-norm of Radial Basis Function 

interpolants”, Dept. Applied Math. Theor. Phy., Univ. Cambridge, 

UK., Tech. Rep. DAMTP 2000/NA04, 2000. 

[28] C.T. Lawrence and A.L. Tits, “A Computationally Efficient Feasible 

Sequential Quadratic Programming Algorithm”, Society for Industrial 

and Applied Mathematics, Vol. 11, No. 4, pp. 1092-1118, 2001. 

463


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search
	Search Results
	Print



