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Abstract- Theoretical analysis of the dynamics of evo-
lutionary algorithms is believed to be very important
to understand the search behavior of evolutionary al-
gorithms and to develop more efficient algorithms. We
investigate the dynamics of a canonical genetic algo-
rithm with one-point crossover and mutation theoret-
ically. To this end, a new theoretical framework has
been suggested in which the probability of each chro-
mosome in the offspring population can be calculated
from the probability distribution of the parent popula-
tion after crossover and mutation. Empirical studies are
conducted to verify the theoretical analysis. The finite
population effect is also discussed. Compared to existing
approaches to dynamics analysis, our theoretical frame-
work is able to provide richer information on population
dynamics and is computationally more efficient.

1 Introduction

Theoretical analysis of evolutionary algorithms has received
increasing attention in the recent years [Ree03]. A few ex-
amples of interesting topics are, among many others, con-
vergence analysis [Rud94, Bae94], dynamics of evolution
strategies [Bey99], genetic algorithms [Vos99a, Pru01b],
and analysis of average computational time [He02].

However, the dynamics of EAs during optimization and
the roles of each genetic operator are still unclear. In our
opinion, the analysis of dynamics of EAs is very helpful not
only to understand working mechanism of EAs [Oka02] but
also to improve performance of EAs and to propose new
algorithms [Oka03] because the solution of an optimizer is
the result of the dynamics of EAs.

In this paper, we investigate the dynamics of crossover
and mutation of genetic algorithms (GAs), both theoreti-
cally and empirically. This paper will not discuss the dy-
namics of selection due to the restriction of pages. The se-
lection will be discussed elsewhere [Oka05]. For this pur-
pose, we propose a new theoretical framework, which is
particularly suited for analyzing the dynamics of GAs com-
pared to the existing ones [Gol89, Vos99a].

Section 2 introduces in greater detail the related work on
dynamics analysis of GAs. The new framework for analyz-
ing dynamics of genetic algorithms is described in Section
3. The dynamics of GAs is investigated theoretically and
empirically in Section 4. More discussions of the proposed
framework are presented in Section 5. A summary of the
paper is given in Section 6.
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2 Related Work

2.1 Analysis of Dynamics with Cumulants

Several approaches to the dynamics analysis of single ob-
jective evolutionary algorithms have been reported, e.g.
[Pru97, Rat95]. For single objective EAs, the fitness space
is one-dimensional, and therefore the cumulants, e.g. av-
erage, deviation, skewness, kurtosis etc., can be used to
describe the main dynamics of EAs. Priigel-Bennett and
Shapiro [Pru97] have shown how to derive a set of equa-
tions describing the dynamics of a GA. They have shown
the influence of genetic operators on the first four cumu-
lants. Priigel-Bennett has also studied selection and rank-
ing [Pru00], two point crossover [Pru0la] and recombina-
tion [Pru01b] with cumulants. Rogers and Priigel-Bennett
[Rog97] have studied the roulette wheel and stochastic uni-
versal sampling, where the finite population effect has been
fully considered. Generational selection and the steady state
selection are analyzed in [Rog99]. Based on their analy-
sis, they suggested that mutation tends to increase the vari-
ance of the final population equilibrium distribution but also
move the mean of the distribution away from the global
minimum back toward the maximum entropy state. Rat-
tray [Rat95] has also investigated the GA dynamics with
cumulants. He concluded that higher cumulants improve
convergence as they increase the accumulation of correla-
tions under selection. The role of crossover seems to be to
distribute the correlations more evenly in order to increase
diversity, reducing the magnitude of the higher cumulants.
Van Nimwegen et al. [Nim97] have analyzed the dynam-
ics of the Royal Road Genetic Algorithm with cumulants,
where GA dynamics is considered as a flow in the fitness
space.

2.2 Analysis of Dynamics by Modeling GAs

Although the cumulants are more tractable than the popula-
tion distribution itself, much information will be lost. One
of the first models of GAs was introduced in [Gol89]. Gold-
berg built the model for a canonical GA with two-bit strings
for solving the minimum deceptive problem, where propor-
tional selection is used. Vose [Vos93] extended Goldberg’s
model to an arbitrary number of strings, which is often
termed Vose’s Model. To store the information of the pop-
ulation distribution, he used a probability vector of which
each component indicates the probability of a certain chro-
mosome. The usage of the probability vector implicitly as-



sumes an infinite population size in its definition [Vos93].

Suzuki [Suz98] explained how to model the GA with
Markov chain. Using Markov chain, Fogel[Fog92] and
Rudolph [Rud94] have analyzed the convergence of canon-
ical GA. Since an infinite population size is not realis-
tic, the effect of finite population size in population dy-
namics has been studied in [Pru97, Pru00]. A more de-
tailed review of research work on this topic can be found
in [Aga99, Whi93, Whi95a].

One main drawback of Vose’s Model is its huge time
complexity, i.e. 0(23!), where [ is the length of strings. Vose
and Wright [Vos98a, Vos98b] have employed the Walsh
transformation to reduce the complexity. With the help of
the Walsh transformation, the mixing matrix becomes a tri-
angular matrix. In the triangular matrix, only 3! components
are non-zero. In this way, the complexity can be reduced to
o(3"). In [Vos98b], they derived Geiringer’s theorem (also
known as Robbins’ proportions) [Wri02] using a GA model.
Wright et al. [Wri02] have analyzed a gene pool GA with
the Walsh transformation.

3 A New Theoretical Framework

For any chromosome Z of length I, Z € {0,1}!. A chro-
mosome index and the occurrence probability are denoted
by ¢ and P((), respectively. Notice that in a population,
we have 3~ P(¢) = 1. In this paper, a chromosome index
¢ and a chromosome Z will be used synonymously. For a
function f(-), we also use both representation of f({) and
f(Z) to show the value of the function f at Z. To facilitate
our analysis, we first define the following notations:
Definition 1 (Don’t Care Symbol): If the allele of bit, i.e.,
1 or 0, has no influence or is not considered, this allele is
notated with the symbol **’, which is known as Don’t Care
Symbol.

Definition 2: If the allele is fixed, i.e., 1 or 0, we notate this
allele with the symbol *#’. This means that the actual value
of the allele does not matter, but it has to be fixed.
Definition 3 (Chromosome Index ¢): The index of chro-
mosome Z is defined by ¢ = Eﬁzl B(Z,i) x 2!=%. Here,
B(Z,i) means the i-th component of the chromosome Z.
This equation is the same function which decodes Z to the
integer value in the range [0, 2! — 1] using binary coding.

3.1 One-point Crossover

We first analyze the change of population distribution re-
sulting from one-point crossover theoretically. Assume that
the probability of applying crossover is P,, which is also
called crossover rate.

As we know, the one-point crossover in GAs is carried
out by exchanging part of their chromosome. To facilitate
the theoretical analysis, we can consider that the crossover
is implemented in two steps, i.e., offspring 1 is generated
from parent 1 assisted by parent 2, and similarly, offspring
2 is generated from parent 2 assisted by parent 1, refer to
Fig. 1. Since no selection is considered in this work, we as-
sume that the assisting parent is chosen from the population
randomly.
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©  Offspring 1 ) €)
O \Oﬁfspring 1 .
{ g @) + T / ©
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Parent 1

Coupling

©

Parent 2 Parent 2 Parent 2
Figure 1: Illustration of a model for analyzing crossover
dynamics.

Let us now consider the probability of a particular type
of building blocks in which the allele of the final ¢ bits is
x. For simplicity, a chromosome whose alleles of its last ¢
bits are *’s is notated as ¢? (b stands for backwards). For
example, ¢! denotes the chromosome Z = {##...##x},
¢§ for chromosome Z = {##...## * x} as ¢§, and so
on Thus, the chromosome index of ¢? can be defined as

= 37} B(Z,j) x 2!=9%. The probability of ¢} = j,
denoted by P”( ), can be calculated from the probabilities
of ¢¢_, as follows:

b [ P(2j)+P(2j+1) if (=1
PO ={ B ey it 11 O
To help understand Equation (1), an example with [ = 2
is given in Table 1. As Table 1 shows, the probability of
PP(¢?) can be calculated from the probability of two in-
dividuals P? ,(¢? ,) having one bit fewer of Don’t Care
Symbol.

Table 1: Example of Equation (1). Here, 2 bits are assumed.
The abbreviations are as follows: Chrom. = Chromosome,
Prob. = Probability and B.B. = Building block.

¢ | Chrom. | Prob. | ¢} | B.B. | Proh.

0 | [00] P0) [ 0 [ [0*] | PP(0)

1] [oq] P(1) = P(0) + P(1)
2 | [10] P2 |1 |17 | PP(1)

3] [ P(3) = P(2) + P(3)

Next, we consider chromosomes whose first ¢-th bits are
«’s. Similarly, a chromosome index for Z = {x x ... %
*x# ... ##} (the first ¢ bits are the Don’t Care symbol) is
defined as ¢/ = " B(Z,7) x 2! (f stands for for-
wards).

The probability of ¢/ = j, denoted by P/ (), can be
easily calculated by the probability of ( _, as follows:

; P@j) + P(j + 2179 if i=1
FiG) = { Pl LG)+PL G+27%) if i #1 @

Again, an example with [ = 2 is given in Table 2 to
illustrate that the probability of P/ (¢/) can be calculated
by using the probabilities of P/ , (¢/ ).

With Equation (1) and (2), the generative probability of
Z, that is, the probability of Z after crossover (denoted by
&(Z)) can be calculated as follows:

=141

£(2) = P(Z) x
-1

+ > P (Cg) x PH(C) x Pox —
k=1

(1.0 - P,)

7 G



Table 2: Example of Equation (2). Here, 2 bits are assumed.
The abbreviations are the same as in Table 1.

¢ | Chrom. | Prob. | ¢/ | B.B. | Prob.

0 | [00] PO) |0 | [xq | P/ (0)

1] [01] P(1) = P(0)+ P(2)
2 | [10] PR |1 [ | P (1)

3 ] [17] P(3) = P(1)+ P(3)

where, P, is the crossover rate. There are two cases in
which a certain chromosome Z will be generated. The
first case is that a parent with chromosome Z is chosen and
no crossover occurs, which corresponds to the first term in
Equation (3). The second case is that two parents are cho-
sen and crossover occurs, corresponding to the second term
in Equation (3). With Equation (3), the generative probabil-
ity of all possible chromosome resulting from one-crossover
can be calculated.

Now, the computational complexity to calculate all £(Z)
is considered. It is noticed that 3 - 2! — 6 arithmetic oper-
ations are needed for calculating all P?(-), 4 - 2! — 8 for
calculating Pl.f(-), 1 for calculating 1.0 — P, 2 for calculat-
ing P./(I —1)and - (7] — 3) - 2!~ for calculating £(Z)
because 31 + k + 2 operations are necessary for calculating
PP (&) x PL(¢]) x P./(1 — 1). Thus, the total com-
putational complexity is 2!~ - (712 — 31 4 14) — 11. Since
the part of 2!~ has more influence than other parts when [
is large, the dominant complexity can be said to be o(2!).

3.2 Bit-flipping Mutation

If the Hamming distance [Gol89] between two chromosome
Z and Z' is given by | Z @ Z'|, the probability that the chro-
mosome Z' becomes Z, E(Z' — Z), can be calculated as:

E(Z' - 2) = (1— Py)'~ #8777l ()
where, [ and P,, are the length of chromosome and the
mutation rate, respectively. The operator @ is bitwise
exclusive-or. Since the Hamming distance indicates the
number of different alleles between Z and Z’, the muta-
tion should occur at | Z @ Z'| alleles and no mutation should
occur at (I — |Z @ Z'|) alleles. Since all chromosomes have
a chance to become Z, the total generative probability of Z,
=(Z), can be calculated by summarizing over all possibili-
ties:

(1]

(2) =) (1= Py) 1787 plZ8%1¢(7"). (5)
ZI

For all 2(Z), denoted by =, the above equation can be re-

written in the following matrix form:

- E= M§7 (6)
here, = = {E(O) 2(1),2(2)...,2(2 - } and
= {£(0),£(1),£(2)...,£(2" - 1)} . The matrix M is

called Mutation Matrix. As an example, the mutation matrix
for 2 bit chromosome (22 x 22), is calculated as:

a ¢ ¢ b

c a b c
M_cbac’

b ¢ ¢ a

where,a = (1 - P,,)%, b= P,,(1 - P,,) andc = P2.

The dominant complexity of Equation (6) can be eas-
ily calculated to be o(22!). However, this complexity can
be reduced by the Walsh transformation [Vos98a, Vos98b].
Equation (6) can be written as:

) _ E=Mg ()
where, 2 = WE, M = WMW and £ = WE. The matrix
W is the Walsh matrix defined in [Vos98a, Vos98b]. With
the Walsh transformation, the mutation matrix becomes a
diagonal matrix where only 2/ components are non-zero.
Theorem (Walsh Transformed Mutation Matrix): The
mutation matrix can be simplified to the diagonal matrix
using the Walsh transformation.

A proof of the above theorem is given in Appendix A.

The Walsh transformed mutation matrix can be calcu-
lated as:

My = 1

'O Mnfl 0

Mn 0 -2 |0
With this recursive equation, the complexity to obtain Walsh
transformed mutation matrix, M, is only o(2}).

The Walsh transformed vector Z can be calculated in
0(2!1) by the fast Walsh transformation [Vos99a]. Then,
the Walsh transformed vector Z can be calculated from M
and £ in o(2'(1 + 1)). By conducting the fast inverse Walsh
transformation toward =, the vector = can be calculated in
0(2'1). Thus, the dominant complexity of the proposed the-
ory in this work is still o(2!).

4 Dynamics of Crossover and Mutation

4.1 Theoretical Results on Crossover Dynamics

With Equation (3), we can calculate the probability of off-
spring after crossover without mutation (P,,, = 0), £(Z) in
GA, given a parent population with a certain probability dis-
tribution. No selection is taken into account, i.e., the parents
are selected randomly and all offspring become the next par-
ents. The new probability of parent Z will be P(Z) = £(Z).
We can repeat this procedure to obtain the transition of the
probability. This transition of existent probability for any
possible chromosome is termed population dynamics, or dy-
namics for short in this paper. Consider an initial population
whose individuals are composed of a chromosome of length
3. An example probability of each chromosome of the ini-
tial population is given in Table 3. Then, we can calcu-
late the transition of the probability resulted from one-point
crossover. The results for two crossover rates (P, = 1.0 and
P. = 0.5) are shown in Figure 2(a) and (b), respectively.

Table 3: Example of the probability with 3 bits.
P(0)=0.150 | P(1)=0.100 | P(2)=0.125 | P(3)=0.200
P(4)=0.175 | P(5)=0.175 | P(6)=0.025 | P(7) = 0.050

Figure 2 indicates that the probability of all chromosome
converges to a certain value, which is independent of the
crossover rate. In addition, if a larger crossover rate is
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Figure 2: Theoretical results of crossover dynamics: (a)
P. =10, () P. =0.5.

adopted, the convergence speed is faster. The derivative of
the curves in Figure 2 is larger if the difference between
initial probability and the final probability is large.

One question that arises is how to calculate the final
converged probability of each chromosome. We find that
the converged probability can be calculated from the prod-
uct of the initial probability at which a certain allele ap-
pears at all loci. In the above example, the probability
of an allele “0” appearing in the first locus is 0.575 (ac-
cordingly, the probability of an allele “1” is 0.425), the
probability of an allele “0” in the second locus is 0.600,
and the probability of an allele “0” in the third locus is
0.0475. Thus, the converged probability of chromosome
[000] equals 0.575 x 0.600 x 0.475 = 0.163875, refer also
to Figure 2.

The correctness of above result obtained from our frame-

work can be confirmed by Geiringer’s Theorem Il [B0093,
Vos98b].
Geiringer’s Theorem Il [Boo93] : If [ loci are arbitrarily
linked, with the one exception of “complete linkage”, the
distribution of transmitted alleles “converges toward inde-
pendence”. The limit distribution is given by

l
Jlim P(2) =[] A(2), 9)

i=1
which is the product of the I marginal distributions of alleles
from the initial population.
A population in this state is said to be in Linkage Equi-
librium or Robbin’s Equilibrium [Boo93].

4.2 Empirical Results on Crossover Dynamics

To verify the theoretical results on the crossover dynam-
ics achieved in our framework, empirical calculations have
been conducted. Figure 3 shows a generic procedure for
empirical verifications. Of course, mutation and selection
are skipped at this stage.

Note that the genetic algorithm is executed r,,,, times
to reduce the randomness. In each generation, the number
of individuals with a certain chromosome is calculated. Fi-
nally, the probability of a certain chromosome is calculated.

The empirical results are shown in Figure 4. The param-
eters used in the calculations are as follows: number of runs
Tmaz = 100000; crossover rate P, = 1.0, 0.5; the number
of individuals | P| = 10, and 1000; the initial probabilities
are given in Table 3. The dotted lines in Figure 4 denote the

begin
counter(i,t) := 0,Vi € PIand Vt € [0, tmaz];
for r := 1t0rymqes do
initialize population P based on given probabilities;
Vi € PI do counter(i,0)+ = (number of individuals with z);
for t := 1t0tynae do
Crossover, P — Peros;
Mutation , Peros —> Pruta
Selection, Pryta — Psele;
Copy, P = Pgele;
counter(i, t)+ = (number of individuals with ¢ in P), Vi € PI;
endfor;
endfor;
probability(i, t) := counter(i,t) / Tmaz / |P|;
end

Figure 3: A generic procedure for empirical verifications,
where PI is the possible individual, t,,,,, is the maximum
number of generations, ;4. is the number of runs, P, is
the population after crossover, Py, is the population after
mutation, P is population after selection, and finally, | P|
is the number of individuals in population P.

theoretical results shown in Figure 2. A good agreement be-
tween the theoretical and empirical results can be observed
when the population size is sufficiently large. However, a
discrepancy between the theoretical and empirical results
can be observed when the population size is small, which
is known as finite population effect. This finite population
effect will be discussed further in Section 5.

o1 2 7 8 9 10 0 2 4 6 8 10 12 14 16 18 20
Generation

3 4 5 6
Generation

7 8 9 10 0 2 4 6 8 10 12 14 16 18 20
Generation

3 4 5 6
Generation

() |P| = 1000, P, = 1.00 (d) |P| = 1000, P, = 0.50

Figure 4. Empirical results on crossover dynamics. Two
crossover rates and two population sizes are considered.

4.3 Theoretical Results on Mutation Dynamics

To investigate the dynamics of mutation, we can observe
the transition of the probabilities resulting from mutation.
Again the probability distribution in Table 3 has been used
for the initial population and the results are shown in Fig-
ure 5, for two mutation rates P,,, = 0.10 and P,, = 0.01.
The dynamics resulting from mutation is clearly differ-
ent from that from crossover mutation. It can be seen from



Figure 5 (a) and (b) that the probability for all chromosome
converges to the same value of 1/2!. The only difference be-
tween Figure 5(a) and (b) is the speed of convergence. The
larger the mutation rate, the faster the convergence speed.
From Figure 5, one can also see that mutation increases the
entropy of the population. It is also interesting to note that
a different approach used in [Rog01] for analyzing muta-
tion dynamics yielded the same result. In Appendix B, we
show that the result obtained using our method and that in
[Rog01] are equivalent using the Perron-Frobenius Theo-
rem.

5 10 15 20 25 30 35 40 45 50
Generation

(0) P, = 0.01

Figure 5: Theoretical results on mutation dynamics. (a)
P,, =0.10and (b) P,, = 0.01.

6 8 10
Generation
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4.4 Empirical Results on Mutation Dynamics

To verify the theoretical result on mutation dynamics, we
investigate empirically the population dynamics resulting
from mutation using the generic procedure in Figure 3,
where crossover and selection are not considered. The pop-
ulation size is 10 and two different mutation rates, P, =
0.10 and P,, = 0.01 are used.

The results are shown in Figure 6, which are completely
the same as those obtained from theoretical analysis shown
in Figure 5. Unlike the crossover dynamics, the finite pop-
ulation effect has no influence on the mutation dynamics
since mutation is carried out independent of any other indi-
viduals.

HEidbbes

6 5 10 15 20 25 30 35 40 45 50
Generation Generation

@) |P| =10,P,, =0.10 (b)|P| = 10, P,, = 0.01

Figure 6: Empirical results on mutation dynamics. (a)
P,, = 0.10 and (b) P,, = 0.10. 10 individuals are used.
The dotted curves are used to denote the theoretical results.
Since the theoretical and empirical results are the same, we
cannot see the dotted curves.

4.5 Theoretical Results on Combined Dynamics of
Crossover and Mutation

Now, we investigate the population dynamics when both
crossover and mutation are applied. Starting form the ini-

tial probabilities given in Table 3, the transition of proba-
bilities is calculated theoretically. The results with various
crossover and mutation rates are shown in Figure 7.

Figure 7 shows that the dynamics is similar to the
crossover dynamics in the early generations. However, af-
ter 2 to 10 generations, the dynamics is governed by the
mutation dynamics. Comparing Figures 7(a) and (c), we
find that the influence of the crossover rate is minor when
the mutation rate is large. Even when the mutation rate is
small (e.g., 0.01), the influence of different crossover rates
diminishes in later generations.

5 10 15 20 25 30 35 40 45 5
Generation

6 8 10 5 10 15 20 25 30 35 40 45 50
Generation eneration

(©) P. = 0.50, P,, = 0.10  (d) P, = 0.50,P,, = 0.01

Figure 7: The theoretical results on dynamics of crossover
and mutation.

4.6 Empirical Results on Combined Dynamics of
Crossover and Mutation

The dynamics of crossover and mutation is investigated em-
pirically in this section. The population size is 10, the
crossover rates are P, = 0.50, 1.0, and the mutation rates
are P, = 0.01,0.10. The results are shown in Figure 8.

Figure 8 shows that the empirical results agree well with
the theoretical results. Additionally, Figure 8 shows that
the finite population effect observed on crossover becomes
much less significant when the mutation rate is high, e.g., in
Figure 8(a) and (c) where P,,, = 0.10, due to the fact that
the population size does not play any role in mutation dy-
namics. This indicates that the population dynamics can be
predicted correctly using our theoretical framework when
the mutation rate is high. If the mutation rate is low, the
finite population effect becomes noticeable.

5 Discussions

5.1 Difference to Vose’s Theory

It is interesting to discuss the advantages and disadvantages
of Vose’s Model [Vos99a] and the framework proposed in
this work. In our opinion, Vose’s Model is particularly well
suited for convergence analysis of genetic algorithms. In
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Figure 8: Empirical results on the combined dynamics of
crossover and mutation. 10 individuals are used. The dot-
ted curves show the theoretical results. (a) (P, Py,) =
(1.00,0.10), (b) (P., P,,) = (1.00,0.01), (¢) (P., Pp) =
(0.50,0.10) and (d) (P., P,,) = (0.50,0.01).
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contrast, our framework is particularly effective to investi-
gate the transient dynamics of genetic algorithms, however
not very efficient for convergence analysis. The reason is as
follows. In Vose’s model, the computational complexity for
calculating the mixing matrix is very expensive (o(3!), I is
the length of chromosome). Of course, this matrix needs to
be calculated only once. In our theory, the computational
complexity to calculate the dynamics of crossover and mu-
tation is o(2'), though a re-calculation is needed for each
generation. Another drawback of our framework is that it
works only for one-point crossover.

5.2 Finite Population Effect

The discrepancy between the theoretical and empirical re-
sults when the population is finite is known as the Finite
Population Effect. Let us denote a certain chromosome,
the initial probability, the theoretically converged probabil-
ity, and the converged probability obtained empirically from
a finite population as Pjpitiai, Piheory, @Nd Pempirical, 1€-
spectively. Now, we define a ratio « as follows:

o= PempiTical - Pinz'tial ) (10)
Ptheory — Linitial
It is worth noting that & = 1 means an empirically con-
verged probability is equal to a theoretically converged
probability. Note that a cannot be defined if a theoretically
converged probability is equal to an initial probability.

We study the change of ratio o with respect to the pop-
ulation size. We also use the probabilities in Table 3 as the
initial probabilities, we set P, = 1.00 for crossover. We
take the probabilities at generation 50 as the empirically
converged probability. The results are shown in Figure 9
(a) when the population size is varied between 2 and 1000.
Since we use 3 bits in this study, 23 = 8 possible chromo-

some exist, whose probabilities are shown in the figure. It
can be seen from Figure 9 (a) that all 8 curves show the
same tendency, although a few oscillations can be observed.
More precisely,  increases as the population size increases,
and converges to 1 when the population size is larger than
120. This means that if the population size is larger than
120, the difference between an empirical result and the the-
oretical result is minor.

A further question that could arise is whether the con-
vergence of a depends on the initial probabilities or on the
length of the chromosome. To answer this question par-
tially, we observe « using different initial probabilities and
different chromosome lengths. Nine cases are investigated,
i.e., 3 cases for 2 bits, 2 cases for 3 bits, 4 bits and 5 bits.
Due to space limit, the different initial probabilities used
will not be given here. The results are shown in Figure 9
(b). In the figure, the values of each « are averaged over
different chromosomes. We show only one curve for each
case.

Figure 9 (b) indicates that the curves are nearly the same
even if we change initial probabilities and the number of
bits. However, we still have to investigate the value of a
for more than 5 bits to draw a more general and concrete
conclusion.

10° 10 10° 10° 10° 10° 10°

0
10
Population Size Population Size

(@) 3 bits (b) Several bits

Figure 9: Change of the ratio o with the number of individu-
als. & = 1.00 indicates that an empirically converged prob-
ability equals a theoretically converged probability. Here,
P. =1.00.

5.3 Influence of the Number of Bits

The benefit of our theory proposed here is its low complex-
ity>. This reduction of the complexity enables us to use
more bits than the existing theory could do. To exploit this
benefit, the influence of the number of bits is investigated.
As an example, crossover is investigated here. The number
of bits used here are 2, 4, 6, 8, 10, 12 and 14 bits. The
crossover rate, P, is assumed to be 1.0. Due to the page
limit, the initial probabilities are not given here. The repre-
sentative history of each bit is shown in Figure 10. To com-
pare all results quantitatively, the normalized probability,
Prorm is used as: Prorm = (P - Pinit) / (Ijlznk - szt)
Here, P, P;,;; and Py, are the obtained probability, the
initial probability and the probability under linkage equilib-
rium, respectively. Note that in Figure 10, only the probabil-
ity of the chromosome whose alleles are all zero is shown.
Figure 10 shows that the number of bits changes the dynam-
ics.

1Although the reduction of the complexity was successfully conducted,
the complexity is still exponential. Further investigation should be done.
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Figure 10: The influence of the number of bits.

6 Summary

In this paper, we have proposed a new theoretical frame-
work for analyzing the dynamics of crossover and mutation
of genetic algorithms. Compared to existing model-based
approaches to dynamics analyses of GAs, this framework
is computationally efficient, which makes it possible to an-
alyze GA dynamics with a longer bit length. Besides, it
enables us to examine the transient dynamics of GAs gen-
eration by generation, which might be more inspiring for
designing new algorithms.

As expected, our framework confirms the main findings
about the roles of crossover and mutation that were achieved
by existing frameworks, though a very different approach
has been adopted. For example, crossover moves a popula-
tion to the so-called Linkage Equilibrium, which can be cal-
culated with the initial probability distribution of the popu-
lation. Besides, crossover shows the finite population effect,
which can be greatly reduced with an increasing population
size. In contrast, mutation moves a population to a uniform
distribution, and shows no finite population effect.

Since our new framework is able to examine the transient
dynamics, we also observed some more detailed behavior of
crossover and mutation. For example, crossover rate has a
big influence on the speed of the convergence to the link-
age equilibrium. Besides, we noticed that the combined dy-
namics of crossover and mutation is dominated by that of
crossover in the early generations. However, the dynamics
of mutation begins to dominate in the later generations. If
the mutation rate is sufficiently large, the effect of crossover
will disappear. Contrary to that, the effect of crossover will
disappear gradually when the evolution proceeds, only if the
mutation rate is sufficiently small.

We studied the finite population effect more quantita-
tively by introducing the ratio « reflecting the discrepancy
between the theoretic and empirical results. With the help of
this ratio, we show with our framework that the discrepancy
is minor when the chromosome length is small.
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A Walsh Transformed Mutation M atrix

Proof : Mathematical induction is used in the proof.

(1) The Walsh transformed mutation matrix //\-/1\1 for 1 bit is
as follows:

=~ 1 1 0
M1—W1M1W1—§( 0 1-2P, ) (11)

Thus, M; is a diagonal matrix.
(2) We assume that the Walsh transformed mutation matrix
forl =n — 1, M,,_4, is a diagonal matrix.

Now, we will take I = n into consideration. The Walsh
transformation matrix W,, and the mutation matrix M,, can
be expressed with the submatrix W,,_; and M,,_, as fol-
lows:

_ L anl anl )
Wa= - (Wt et ) 12
_ (I_Pm)Mn—l PmMn—l ) 1
Mn = ( PaMn_r  (1— Pa)May ) @9

The Walsh transformed mutation matrix /\//-l\n can be calcu-
lated as:

— 1 0
My =Wp_1Mp_1Wp_1 ( 0 1-2P, ) . (14)

Then, the Walsh transformed mutation matrix /T/l\n isalso a
diagonal matrix.

With (1) and (2), the Walsh transformed mutation matrix
becomes a diagonal matrix for any number of bits.

(QED)

B Role of Mutation

Proof : The mutation matrix is assumed to be M,, for n-
bit problem. The number of components in M,, is 2™ x 2™,
We denote the identity matrix with 2™ x 2™ as I,,.

The mutation matrix M, can be written as:

1- Py, Py, )
b)

Mo=(), M=t

(15)

Here, P, (0 < P,, < 1) is the mutation rate. For general
cases, the mutation matrix M, can be given by:

Mn _ ( (1 _Pm)Mn—l PmMn—l ) .

1
PmMnfl (1_Pm)Mn71 ( 6)

Since 0 < P, < 1, all components of M, are
non-negative. Thus, Perron-Frobenius theorem says that
limy_y o0 (Mn)t P will converge Z which satisfies M, & =
AmaxZ. Here, the sum of all components in Pand Z are 1.
The variable of Apax is given by Apax = max (|A]), where,
A are eigenvalues obtained from M, & = AZ. Note that the
number of components of P and & are 2.

To obtain Amax, first, we will calculate the eigenvalues
of M,. Since M,& = AT <= WM W, Vi =
W, T <— M,y = A, we can calculate the eigenval-
ues by /T/l\n Here, W, is the Walsh transformation matrix
for n bits, M, = W, MW, and § = W, 7.

We denote d,, as d,, = det(M,, — AI,,). Since the Walsh
transformed mutation matrix, M., can be given by:

_— Mn—l 0
Mn = ( 0 (1 —2Pp)Myp_1 ) ’ an

we can calculate d,, as follows:

1) n=0
dg:det(/(/l\gf)\lo):lf/\
2 n=1

dy = det (M — )\Il) = (1-2) (1 —2Pm) — 1)
(3) n=2
ds = det (/\//1\2 - m)
=(1-2)(a-2Pn) - ,\)2 ((1=2P7)% = A).
From the above examples, one can easily find out the so-
lutions which satisfy d,, = det (/\//E — /\In) = 0. The
solutions for n bits are as follows:

A=1, 1-2P,, (1-2P,)?% ,(1 —2P,)". (18)

Since 0 < P, < 1, the variable of Apax IS Amax = 1.

Now, the eigenvector of ¢ for A = 1 will be calculated
by /\//l\ngj = Ay = ¢. This equation can be also written with
each component as:

1 0 0
0 1-2P L
m g=17 (19)
: - . 0
0 0 (1—2Py)"

Since0 < P, <1, (1-2P,)™ # 1. the vector 7 can be
written as 7 = (yo,0,0,...0)T.

With ¥ = W, Z, the eigenvector of Z will be calculated.
Since W,,' =W, & can be calculated as:

Z = Wni = (40,90, %0) - (20)

Since 7 should satisfy Eflgl x; = 1, one can obtain & that
P converges as:
7= (1/24,1/2%,..,1/20) " @1

Therefore, mutation increases the entropy of the population,
and finally it leads population with a uniform distribution.

(Q.E.D)



