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Abstract—An agent-based evolutionary approach is proposed to extract interpretable rule-based
knowledge. In the multi-agent system, each fuzzy set agent autonomously determines its own
fuzzy sets information such as the number and distribution of the fuzzy sets. It can further con-
sider the interpretability of fuzzy systems with the aid of hierarchical chromosome formulation
and interpretability-based regulation method. Based on the obtained fuzzy sets, the Pittsburgh-
style approach is applied to extract fuzzy rules that take both the accuracy and interpretability
of fuzzy systems into considerations. In addition, the fuzzy set agents can cooperate with each
other to exchange their fuzzy sets information and generate offspring agents. The parent agents
and their offspring compete with each other through the arbitrator agent based on the criteria
associated with the accuracy and interpretability to allow them to remain competitive enough
to move into the next population. The performance with emphasis upon both the accuracy and
interpretability based on the agent-based evolutionary approach is studied through some bench-
mark problems reported in the literature. Simulation results show that the proposed approach
can achieve a good trade-off between the accuracy and interpretability of fuzzy systems.

Index Terms—Multi-agent system, interpretability and accuracy, hierarchical chromosome for-
mulation, multi-objective decision making

I. INTRODUCTION

The fundamental concept of fuzzy reasoning was first introduced by Zadeh [40] in 1973, and
the past few years have witnessed a rapid growth in a number of applications of fuzzy systems.
One of the most important motivations for building up a fuzzy model is to let users to gain a deep
insight into an unknown system through the easily understandable fuzzy rules. Another main
attraction undoubtedly lies in the characteristics that fuzzy systems possess: they are capable
of handling complex, nonlinear, and sometimes mathematically intangible dynamic systems.
However, when the fuzzy rules are extracted by the traditional learning methods, there is often
a lack of interpretability in the resulting fuzzy rules. This is essentially due to two main factors:
1) the number of rules and fuzzy sets are usually larger than necessary, and 2) the topology
of fuzzy sets is inappropriate. So there is always a trade-off between the interpretability and
accuracy of fuzzy systems constructed from training data. Recently increasing attention has
been paid to improve the interpretability of fuzzy systems [2,7,15-19,25,27-29,35,38,39]. And
the book [1] edited by Casillas et al. presents an up-to-date state of the current research.

In this work, our main purpose is to propose an approach to study the interpretability of
∗This work is supported by City University of Hong Kong Strategic Grant 7001416
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fuzzy systems and the trade-off between the accuracy and the interpretability of fuzzy systems
autonomously generated from the learning data. So this is a multi-objective optimization prob-
lem by its very nature. And the multi-objective evolutionary algorithm is very suitable to solve
this problem. In the multi-objective evolutionary algorithm, a main advantage is that many
solutions each of which represents an individual fuzzy system can be obtained in a single run.
And the accuracy and interpretability issues can be incorporated into the multiple objectives to
evaluate the solutions. Thus, the improvement of interpretability and the trade-off between the
accuracy and the interpretability can be easily studied. On the other hand, the neural network
based method is very effective to generate fuzzy systems from the sampling data, such as the
methods in [20-22]. However, there is only one fuzzy system that can be obtained by the neural
network based method. Additionally, in order to generate interpretable fuzzy rules, not only
the accuracy, but also the interpretability conditions should be considered. This means that in
a neural network based approach, extra regularization terms that guarantee the interpretability
should be added alongside the accuracy index. One difficulty in this approach is how to properly
select the regularization term and determine its relative importance in the whole cost function.

In this paper, we propose an agent-based evolutionary approach to constructing fuzzy sys-
tems from training data with the emphasis on both the accuracy and interpretability. We want
to explore a more compact fuzzy system considering not only the number of rules but also the
number of fuzzy sets. In addition, we also hope to get more appropriate distributions of fuzzy
sets with no interference from human beings. It is a very difficult task compared with the
methods stated in [10,11,36]. In [36] the author used some important end points to distribute
membership functions. The number of fuzzy sets is fixed and there are some limitations about
the distribution of these fuzzy sets. In [10,11], the fuzzy sets are pre-partitioned without consid-
ering more appropriate distributions. More importantly, it is almost impossible to have a good
understanding about an unknown complex system, even not to mention giving the linguistic
values for each fuzzy variable in advance. In this work, we suggest an agent-based scheme. In
this multi-agent system, each agent has the autonomous capability to determine the number of
fuzzy sets and the distribution of these fuzzy sets considering the interpretable issues of fuzzy
systems. We achieve these goals by means of the hierarchical chromosome formulation and an
interpretability-based regulation method. Then with these fuzzy sets in hand, the agents will
apply the Pittsburgh-style approach to extract interpretable fuzzy rules. The reason for us to
adopt the Pittsburgh-style approach is because the fuzzy rule set can be treated as one solution.
And many solutions can be obtained simultaneously in a single run so that we can compare
the performance of the solutions based on the accuracy and interpretability. The agents apply
NSGA-II multi-objective decision making method to evaluate fuzzy rule sets candidates. After
the agents have finished self-evolving, they can interact with each other by switching fuzzy sets
information and also give birth to new agents. Based on the multiple criteria about the accuracy
and interpretability of fuzzy systems, the elite agents are retained in the multi-agent system,
whereas the obsolete agents are dead through the arbitrator agent.

The paper is organized as follows. Section II discusses the interpretability issues of fuzzy
systems. The agent-based evolutionary approach used to construct interpretable fuzzy systems
is discussed in Section III. In Section IV, the experimental results are given on some benchmark
problems. Finally, we conclude this paper and give the future work prospect in Section V.

II. INTERPRETABILITY OF FUZZY SYSTEMS

The most important motivation to use a fuzzy system is that it uses linguistic rules to infer
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knowledge, making it similar to the way that humans think. Methods for constructing fuzzy
models automatically learning from data should not be limited to find the best approximation
of data only, but also and more important, to extract knowledge from training data in the
form of fuzzy rules that can be easily understood and interpreted. Interpretability (also called
transparency) of fuzzy systems has not received much attention in the field of fuzzy modeling
until the last few years. One reason is that most researchers take it for granted that fuzzy
rules are easy for human beings to understand. However, it is not necessarily true for complex
systems. In the following, we will discuss some important concepts about the interpretability of
fuzzy systems.
A. Completeness and Distinguishability

The discussion of completeness and distinguishability is necessary if fuzzy systems are ob-
tained by automatically learning from data. The partitioning of fuzzy sets for each fuzzy variable
should be complete and well distinguishable. The completeness of fuzzy systems means that for
each input variable, at least one fuzzy set is fired. We can describe this idea in the following
definition:
Definition II-1. Completeness: For each input variable xi (an element of the input vector
X=[x1, x2, · · · , xn]T ), there exists Mi fuzzy sets represented by A1(x), A2(x), · · · , AMi(x). Then
the partition of the fuzzy sets is complete if the following conditions are satisfied:

∀xi ∈ Ui, i ∈ [0, · · · , n];∃Aj(xi) > 0, j ∈ [1, · · · ,Mi] (1)

where Ui is the universe of xi, n is the dimension of the input vector.
The concepts of completeness and distinguishability of fuzzy systems are usually expressed

through a fuzzy similarity measure in the literature [2,7,18,31]. This similarity measure can be
interpreted in many different ways depending on the application context. However, an important
definition is given in [31]: Similarity between fuzzy sets is defined as the degree to which the
fuzzy sets are equal. Based on the similarity measure, three kinds of similarities can be identified:
1) similarity between two fuzzy sets for a given fuzzy variable; 2) similarity of a fuzzy set to the
universal set U(uU (x) = 1,∀x ∈ X); 3) similarity of a fuzzy set to a singleton set. In fact, if the
similarity of two neighboring fuzzy sets is zero or too small, it means that the fuzzy partitioning
in this fuzzy variable is incomplete or the two fuzzy sets do not overlap enough. On the other
hand, if the similarity is too big, then it indicates that the two fuzzy sets overlap too much and
the distinguishability between them is poor (Fig. 1).
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Fig. 1: Fuzzy partitioning. (a) Overlap moderately. (b) Do not overlap. (c) Overlap too much.

In the following, let A and B be two fuzzy sets of fuzzy variable x (on the universe U) with
the membership functions uA(x) and uB(x), respectively. The symbol s represents the similarity
value of these two fuzzy sets: s = S(A,B), s ∈ [0, 1]. We use the following similarity measure
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between fuzzy sets [31]:

S(A,B) =
M(A ∩B)
M(A ∪B)

=
M(A ∩B)

M(A) + M(B)−M(A ∩B)
(2)

where M(A) denotes the cardinality of the fuzzy set A, and the operators ∩ and ∪ represent
the intersection and union, respectively. There are several methods to calculate the similarity.
One form in [28,29] is described as:

S(A,B) =
∑m

j=1[uA(xj) ∧ uB(xj)]∑m
j=1[uA(xj) ∨ uB(xj)]

(3)

on a discrete universe U = {xj |j = 1, 2, · · · ,m}. ∧ and ∨ in Equation (3) are the minimum and
maximum operators, respectively. In our approach, we use this form to calculate the similarity
of fuzzy sets because it is computationally simple and effective.
B. Consistency

Another important issue about interpretability is the consistency among fuzzy rules and the
consistency with a prior knowledge. Consistency among fuzzy rules means that if two or more
rules are simultaneously fired, then their conclusions should be coherent [7], i.e., if two or more
rules have the similar antecedents, their consequents should also be similar. The consistency
with a prior knowledge means that the fuzzy rules generated from data should not be in conflict
with the expert knowledge or heuristics. A definition of consistency and its calculation method
among fuzzy rules is given in [18]. Also one important factor about the consistency is that the
antecedents of one rule may include those of another rule. Take the following three rules for
example:
R1: If x1 is small and x2 is small and x3 is big, then y is big
R2: If x1 is small and x2 is small, then y is middle
R3: If x1 is small, then y is small (4)
Usually we express the above three rules in the following hierarchical form:
If x1 is small and x2 is small and x3 is big, then y is big,
Else if x1 is small and x2 is small, then y is middle,
Else if x1 is small, then y is small. (5)

In [9], it is called inclusion relation. If two fuzzy rules are compatible with an input vector
and one rule is include in the other rule, the former should have a larger weight than the latter
in the fuzzy inference to calculate the output value. Let us consider the following two rules Ri

and Rj :
Ri: If x1 is Ai1(x1) and · · · xn is Ain(xn), then y1 is Bi1(y1) and · · · ym is Bim(ym)
Rj: If x1 is Aj1(x1) and · · · xn is Ajn(xn), then y1 is Bj1(y1) and · · · ym is Bjm(ym) (6)
When the inclusion relation Ajk ⊆ Aik holds for all the input variables (i.e., for k = 1, 2, 3, · · · , n),
we say that the rule Rj is included in the rule Ri, i.e., Rj ⊆ Ri. For the rule Ri, the fire-strength
ui, also called weight of the ith rule is defined as follows:

ui(x) = uAi1(x1) ∧ uAi2(x2) ∧ · · · ∧ uAin(xn), i = 1, 2, · · · , R (7)

where R is the total number of fuzzy rules in the rule base, ∧ is the and operator, minimum
and product are the most common and operators. As far as the inclusion relation is concerned,
a factor λ related to the rule Ri is defined as:

λi =
∏

Rk⊆Ri

(1− uk(x)), k = 1, 2, · · · , R, k 6= i (8)
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Then the fire-strength of the rule Ri considering the inclusion factor is updated as:

ûi = λiui(x), i = 1, 2, · · · , R (9)

Let us illustrate the above ideas by taking the rules R1, R2, and R3 (R1 ⊆ R2 ⊆ R3) in (4) for
example. Assuming the original fire-strengths of R1, R2, and R3 are u1, u2 and u3, then the
inclusion relation factors of the three rules in order are λ1,λ2, and λ3, respectively:

λ1 = 1, λ2 = 1− u1, λ3 = (1− u1)(1− u2) (10)

The final fire-strengths of rules R1, R2, and R3 are updated as:

û1 = λ1u1 = u1 (11)
û2 = λ2u2 = (1− u1)u2 (12)

û3 = λ3u3 = (1− u1)(1− u2)u3 (13)

C. Compactness
A compact fuzzy system means that it has the minimal number of fuzzy sets and fuzzy

rules. In addition, the number of fuzzy variables is also worth being considered. A compact
fuzzy system is always desirable when the number of input variables increases.
D. Utility

Even if the partitioning of fuzzy variables is complete and distinguishable, it is not guar-
anteed that each of the fuzzy sets be used by at least one rule. We use the term utility to
describe such cases. If a fuzzy system is of sufficient utility, then all of the fuzzy sets are utilized
as antecedents or consequents by fuzzy rules. Whereas, a fuzzy system of insufficient utility
indicates that there exists at least one fuzzy set that is not utilized by any of the rules (Fig.
2-(b)). Then the unused fuzzy sets should be removed from the rule base resulting in a more
compact fuzzy system.
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Fig. 2: A fuzzy system with two input variables (three fuzzy sets for each variable) and three rules. (a) Sufficient utility. (b) Insufficient
utility because fuzzy set B2 is not utilized by any rules.

III. AGENT-BASED EVOLUTIONARY COMPUTATION APPROACH

In this paper, we propose an agent-based evolutionary computation approach to constructing
fuzzy models with considerations of both the accuracy and interpretability. The basic modeling
ideas are illustrated in Figure 3. There are two kinds of agents in the multi-agent system: the
Arbitrator Agent (AA) and the Fuzzy Set Agent (FSA). These Fuzzy Set Agents are distributed
independently and obtain information from the Arbitrator Agent in which the information is
expressed in terms of training data in our specified research context. We name the agent as
Fuzzy Set Agent because it can autonomously determine its own fuzzy sets information such
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as the number and distribution, and then learn to construct fuzzy rule base based on the ob-
tained fuzzy sets. As far as the social behavior is concerned, the FSA is able to cooperate and
compete with other fuzzy set agents. Different from the parallel GA where individual in one
subpopulation can migrate into another subpopulation and no subpopulations will be dead, i.e.,
removed from the evolutionary process. While in our agent-based evolutionary approach, the
FSAs cooperatively exchange their fuzzy sets information by ways of crossover and mutation of
the hierarchical chromosome, and generate offspring fuzzy sets agents. After the self-evolving
of the FSAs, they send their fitness information in the form of accuracy and interpretability to
the Arbitrator Agent. In the current work, the Arbitrator Agent use the NSGA-II algorithm
to evaluate the fuzzy set agents, and judge which fuzzy sets agents should survive and be kept
to the next population, whereas the obsolete agents are dead. The agent-based evolutionary
approach has the characteristics of parallel GA. However, the agents have the ability of compet-
ing with each other based on the considerations of accuracy and interpretability. They do not
exchange individuals just like parallel GA subpopulations, instead they cooperatively exchange
information about the fuzzy sets. In the following, we will discuss how the proposed agent-based
approach constructs accurate and interpretable fuzzy systems.
1. The autonomous Fuzzy Set Agents’ intra behavior

In the multi-agent system, the Fuzzy Set Agents employ the fuzzy sets distribution strategy,
interpretability-based regulation strategy, as well as fuzzy rules generation strategy to build
accurate and interpretable fuzzy systems. The details of the strategies are discussed below.

A. Fuzzy sets distribution strategy
Inspired by the insight of biological DNA structure, a hierarchical chromosome formulation

for GA is introduced in [23,24,33], where the genes of the chromosome are classified into two
different types: control genes and parameter genes. These genes are arranged in a hierarchical
form so that the control genes are able to manipulate the parameter genes in a more effective
manner. To indicate the activation of the control genes, an integer 1 is assigned for each control
gene that is ignited, whereas 0 is for turning off. When 1 is assigned, the associated parameter
gene corresponding to that active control gene is activated. The effectiveness of this chromosome
formulation enables the number as well as the distribution of fuzzy sets to be optimized. Figure
4 illustrates the concept further.

For each fuzzy variable xi (i.e., input variable or pattern attribute), we determine the
possible maximal number of fuzzy sets Mi so that it can sufficiently represent this fuzzy variable.
For N dimensional problems, there are totally M1+M2+· · ·+MN possible fuzzy sets or linguistic
values. So there are M1 + M2 + · · ·+ MN control genes coded as bits 0 or 1, where 1 is assigned
to represent that the corresponding parameter gene which is dominated by this control gene
is selected for involvement in evolutionary process, otherwise 0 is for turning off. We apply
the Gaussian combinational membership functions (abbreviated as Gauss2mf) to depict the
antecedent fuzzy sets, i.e., a combination of two Gaussian functions. The Gauss2mf function
depends on four parameters σ1, c1, σ2 and c2 as given by:

f(x;σ1, c1, σ2, c2) =





exp
[−(x−c1)2

2σ2
1

]
: x < c1

1 : c1 ≤ x ≤ c2

exp
[−(x−c2)2

2σ2
2

]
: c2 < x





(14)

where σ1 and c1 determine the shape of the leftmost curve. The shape of the rightmost curve
is specified by σ2 and c2. So we use the parameter list [σ1, c1, σ2, c2] to represent one parameter
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Fig. 3: Multi-agents system framework

gene, i.e., a fuzzy set expressed in the form of a Gauss2mf membership function. The Gauss2mf
is a kind of smooth membership functions, so the resulting model will in general have a high
accuracy in fitting the training data. Another characteristic of Gauss2mf is that the completeness
of fuzzy system is guaranteed because the Gauss2mf covers the universe sufficiently. An example
of the relationship between control genes and parameter genes is given in Figure 5. The Fuzzy
Set Agent initializes its own control genes and parameter genes randomly.

B. Interpretability-based regulation strategy
Although the Fuzzy Set Agent initializes the fuzzy sets, the interpretability issues such as

distinguishability of fuzzy partitions are not guaranteed automatically. So the agent applies the
interpretability-based regulation strategy on the active fuzzy sets to obtain a better distribution
of fuzzy sets and a more compact fuzzy system. In this work, we define a fuzzy set A using
the membership function uA(x; a1, a2, a3, a4), where a1, a2, a3, and a4 are the lower bound, left
center, right center and upper bound of the definition domain, respectively (a1 ≤ a2 ≤ a3 ≤ a4).
However, we use the Gauss2mf as the membership function, so it is not easy to obtain a1 and
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Fig. 4: Example of hierarchical chromosome representation

Fig. 5: An example of Hierarchical formulation

a4 just like the triangular or the trapezoidal ones. We need to calculate a1 and a4 using a very
small number ε (for example 0.001) which is regarded as equal to zero: uA(a1; a1, a2, a3, a4)
= uA(a4; a1, a2, a3, a4) = ε. Nevertheless, the interpretability-based regulation method is also
applicable to all other types of membership functions besides Gauss2mf. The interpretability-
based regulation strategy includes the following two actions.

B.1 Merging similar fuzzy sets
An example of the similarity measure between two fuzzy sets is given as in Equation (3).

If the similarity value is greater than a given threshold, then we merge these two fuzzy sets
to generate a new one. Considering two fuzzy sets A and B with the membership functions
uA(x; a1, a2, a3, a4) and uB(x; b1, b2, b3, b4), the resulting fuzzy set C with the membership func-
tion uC(x; c1, c2, c3, c4) is defined from merging A and B by:

c1 = min(a1, b1) (15)
c2 = λ2a2 + (1− λ2)b2 (16)
c3 = λ3a3 + (1− λ3)b3 (17)

c4 = max(a4, b4) (18)

The parameters λ2,λ3∈ [0, 1] determines the relative importance about the influence the fuzzy
sets A and B have on C. The threshold for merging similar fuzzy sets plays an important role in
the improvement of interpretability. According to our experience, values in the range [0.4, 0.7]
may be a good choice. In our approach, we set the threshold equal to 0.55. Figure 6 illustrates
the case for merging A and B to create C.

B.2 Removing fuzzy sets similar to the universal set or similar to a singleton set
If the similarity value of a fuzzy set to the universal set U(uU (x) = 1,∀x ∈ X) is greater
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Fig. 6: Merging A and B to create C

than a upper threshold (θU ) or smaller than a lower threshold (θS), then we can remove it from
the rule base. In the first case, the fuzzy set is very similar to the universal set and in the latter
case similar to a singleton set. Neither of these cases is desirable for interpretable rule base
generation. We set θU = 0.9, θS = 0.05 in this work.

After implementing the interpretability-based regulation strategy, we have the assumption
that the Fuzzy Set Agent obtains a fuzzy system with Ma

1 + Ma
2 + · · · + Ma

N sets, where 0 ≤
Ma

i ≤ Mi and the case that Ma
i is equal to 0 indicates that the corresponding fuzzy variable

does not be involved in the modeling of fuzzy systems resulting in the dimensionality reduction
by one.

C. Fuzzy rules generation strategy
In the stage of fuzzy rules generation, Fuzzy Set Agents use the Pittsburgh-style approach

to extract rules. Assume there are N fuzzy variables, Ma
i is the number of active fuzzy sets for

variable xi. We also consider the ”don’t care” conditions (also called incomplete rules), so the
total maximum number of possible fuzzy rules is (Ma

1 + 1) × (Ma
2 + 1) × · · · × (Ma

N + 1) for
N -dimensional problems. The task of Fuzzy Set Agents in this stage is to find a small number
of rules considering both the accuracy and interpretability. In the following, we will discuss how
the Fuzzy Set Agents achieve these goals.

C.1 Initialization of the rules population
In the Pittsburgh-style genetic based machine learning approach, the search of a compact

rule set with high performance ability corresponds to the evolution of a population of fuzzy rule
sets. In this work, each fuzzy rule is coded as a string of the length N . We express the string as
an N -length array in the computer program, and the ith element of the array indicates which
fuzzy set of the ith fuzzy variable is fired. The ith element is denoted as ci and initially set to
an integer between 0 and Ma

i with the same probability 1/(Ma
i +1). If ci is greater than zero,

it is indicated that the cith fuzzy set of the ith fuzzy variable is fired, whereas if ci is equal
to zero, this means that the ith fuzzy variable does not play a role in the rule generation. As
far as the ith fuzzy variable is concerned, in the stage of fuzzy rules generation strategy, there
are Ma

i active fuzzy sets related to this variable. We initialize ci equal to zero considering the
incomplete fuzzy rule, i.e., the ith fuzzy variable does not participate in the rule generation.
And ci should be equal to or less than Ma

i because there are only Ma
i active fuzzy sets that

exist for the ith fuzzy variable. Then the Fuzzy Set Agent sets the population size Npop, i.e.,
the number of individuals or solutions involved in the evolutionary algorithm. In the fuzzy rules
generation strategy of this work, each individual is a fuzzy rule sets that represents a fuzzy rule
base. For each individual of the fuzzy rule sets population, it is represented as a concatenated
string of the length N × Nrule, where Nrule is a predefined integer to describe the size of the
initial fuzzy rule base. In this concatenated string, each substring of the length N represents
a single fuzzy rule. Note that we use the recursive least square method [26] and the heuristic
procedure in [8,10,12,13] to determine rule consequents for function approximation problems
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and classification problems, respectively, so the rule consequents are not coded as parts of the
concatenated string. The fuzzy rule sets are randomly initialized so that the cell value of the
concatenated string represents one of the fuzzy sets of the corresponding fuzzy variable or is
equal to zero indicating don’t care conditions.

C.2 Crossover and Mutation
Offspring rule sets are generated by crossover and mutation. As far as the crossover is

concerned, one-point crossover is used (seen in Figure 7). The crossover operation randomly
selects a different cutoff point for each parent to generate offspring rule sets. A mutation
operation randomly replaces each element of the rule sets string with another linguistic value if
a probability test is satisfied. Elimination of existing rules and addition of new rules can also
be used as mutation operations. Such mutation operations change the number of rules in the
rule sets string. Note that the crossover and mutation operations maybe introduce the same
rules, the Fuzzy Set Agent will check the offspring fuzzy rule base to delete the same rules
and maintain single among all the rules after the crossover and mutation operations, so the
consistency of fuzzy systems is guaranteed.

R1
 R2
 R3
 R4
 R5


Rb
 Rc
 Rd
 Re
Ra


Parent-1


Parent-2


Crossover


R1


Rb
 Rc
Ra
 R2
 R3
 R4
 R5


Rd
 Re
Offspring-1


Offspring-2


Fig. 7: Crossover operation

C.3 Evaluation criteria and selection mechanism
The Fuzzy Set Agent uses the following three criteria to evaluate fuzzy rule set candidates:

1) Accuracy: the accuracy is measured in terms of Mean-Square-Error (MSE) for function
approximation problems and classification error rates for classification problems. 2) The number
of fuzzy rules. 3) The total length of fuzzy rules ([25]): the total number of the rule antecedents
displayed in the rule base.

For the function approximation problems, the first-order Takage-Sugeno (TS) fuzzy system
[32] is generated. The Takagi-Sugeno fuzzy system is very suitable for the approximation of
dynamic systems. And the first-order TS fuzzy system is very common and effective. And in
our current work, unlike other GA-based methods for generating fuzzy rules, the rule consequents
are not involved in the chromosome encoding. Instead we use the recursive least square method
to calculate the rule consequents for function approximation problems. So this approach has a
limitation in that it is suitable for the first-order TS fuzzy modeling. However, a clear advantage
of doing so is that it can save the searching time and fully exploit the sampling data. During
the computation, we use the updated rule fire-strength in Equation (9) to infer the conclusion.

As far as the classification problems, the heuristic procedure is applied to generate rule
consequents from the training pattern data. For each n-dimension training pattern data Xi =
[xi

1, x
i
2, · · · , xi

n], the fire-strength of rule Ri considering the inclusion relation is calculated using
Equation (9). Then for each of the c classes, the sum of the fire-strength related to rule Ri is
calculated as:

βClassj(Ri) =
∑

Xk∈Classj

ûi(Xk), j = 1, 2, · · · , c (19)
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Find the class Ci as the consequent of rule Ri which has the maximum value of βClassj . If the
maximum value of βClassj can not be uniquely specified, that is, there are some classes that have
the same maximum value, the fuzzy rule Ri is removed from the rule base. After the rule base
is constructed, we calculate the classification accuracy through the single winner rule method
[14]. For each training pattern data Xi, the winner rule Ri rule is determined as:

ûi(Xi) = max{ûk(Xi) | k = 1, 2, · · · , R} (20)

where R is the number of fuzzy rules. If the class result is not the actual one or more than one
fuzzy rules have the same maximum fire-strength, the classification error increases by one.

Based on the foregoing three criteria, the Fuzzy Set Agent uses the NSGA-II [5] algorithm
to evaluate the fuzzy rule sets candidates. In order to compare the fuzzy rule base candidates,
we predefine the preference for the three criteria. The accuracy is predefined the first priority
and the other two criteria about the interpretability are predefined the same second priority. In
other words, we firstly compare two fuzzy rule base candidates according to the accuracy only. If
these two candidates have the same accuracy level based on our preference, then we compare the
other two criteria to determine which rule base candidate is better. If one rule base candidate
is better than the other based on the accuracy preference, then it is no need to compare the
other two criteria and we can know which candidate is better. In the current work, we use the
difference of the accuracy value of fuzzy rule base candidates to design the preference. If the
difference is less than or equal to a predefined value, then it is considered that the candidates
have the same accuracy level. Otherwise, if the difference is greater than the predefined value,
then we can determine which candidate is better without continuing to compare the other two
criteria. We take such measures because a fuzzy system constructed by learning from data is
meaningful with a certain degree of accuracy. If we do not pay more attention to the accuracy,
the NSGA-II in the long run maybe generate solutions with a high accuracy, however, this is
a passive measure and maybe takes a lot of computational time to achieve such a goal. It is a
topic worthwhile further study and is not the main concern of this paper. Suppose that there
are Npop + Noffs rule sets candidates, where Npop is the parent population size and Noffs is the
number of offspring resulting from crossover and mutation operations. The Fuzzy Set Agent
selects Npop best candidates from the mixed populations. It is an elitism strategy by nature.

Notice that during the course of rules generation, the sufficient utility that we have discussed
in Section II is not guaranteed. So the Fuzzy Set Agent recognizes the unutilized active fuzzy
sets and flips their corresponding control genes from 1 to 0 to guarantee the sufficient utility of
fuzzy systems at the end of the evolution.
2. The Interaction among agents

The Fuzzy Set Agents can interact with each other. In the current work, we assume that
the number of offspring Fuzzy Set Agents (Naoff ) that we want to generate is even and less than
or equal to the number of Fuzzy Set Agents (Nacur) in the current population: Naoff ≤ Nacur.
We select Naoff Fuzzy Set Agents from the current agent population and use the crossover
and mutation operations to generate Naoff offspring agents, i.e., two parent agents generate
two offspring agents. The Naoff Fuzzy Set Agents are different with one another and selected
randomly with the same probability. It is because such a selection mechanism is simple and
easy to implement, and the mating restriction is not incorporated in the current research. Then
crossover and mutation operations are implemented on both the control genes and parameter
genes of two paired parent agents and two offspring agents are generated. The offspring agents
use the interpretability-based regulation strategy and fuzzy rules generation strategy to obtain

11



fuzzy rule base. Thus, the cooperation among the fuzzy sets agents are achieved by exchanging
fuzzy sets information and generating child agents. Then four criteria including the three forego-
ing criteria and the number of fuzzy sets are transferred to the Arbitrator Agent. As mentioned
above, the accuracy is predefined the first priority and the other three criteria are predefined
the same second priority. The Arbitrator Agent implements the NSGA-II algorithm to evaluate
the parent and offspring fuzzy set agents and select Nacur best agents to become the next agent
population. Strong fuzzy set agents considering both the accuracy and interpretability survive
from the competition, whereas the weak ones are discarded from the evolutionary process. We
endow the agents with the ability to cooperate and compete with other agents to achieve the
global goal: constructing fuzzy systems considering both the accuracy and interpretability.

IV. EXPERIMENTAL RESULTS

In order to examine the performance of the fuzzy systems constructed by the agent-based
evolutionary approach, we use three benchmark problems in the literature. Matlab 6.1 is applied
to implement the experiments. To prepare the training and test data for Example A and B, we
use the Simulink Toolbox of Matlab to build the simulated model to generate the sampling data
(see the description in the corresponding part). As far as Example C: Iris Data is concerned,
the sampling data is downloaded from the University of California, Irvine (UCI) database [34].
A. Example: Nonlinear plant with two inputs and one output

The 2nd order nonlinear plant is studied by Wang and Yen in [35,38,39]; Roubos and Setnes,
et al. in [28,29] and Jimacuteenez, et al. in [15]:

y(k) = g(y(k − 1), y(k − 2)) + u(k) (21)

g(y(k − 1), y(k − 2)) =
y(k − 1)y(k − 2)(y(k − 1)− 0.5)

1 + y2(k − 1) + y2(k − 2)
(22)

The goal is to approximate the nonlinear component g(y(k−1), y(k−2)) of the plant with a
fuzzy model. In this work, 400 sampling data points were generated from the plant model. 200
samples of training data were obtained with a random input signal u(k) uniformly distributed in
the interval [-1.5 1.5], while the last 200 validation data points were obtained by using a sinusoid
input signal u(k) = sin(2πk/25). The 400 simulated data points are shown in Figure 8.

In this agent-based approach, we use eight fuzzy set agents each of which has five fuzzy
rule sets solutions, so there are totally forty fuzzy systems obtained. The trends plot about
four criteria including average accuracy (MSE), average fuzzy sets number, average fuzzy rules
number, and average fuzzy rule base total length among the multi-agent system is given in
Figure 9.

From Figure 9, we can see the sawtoothed curve and the tendency plots of the four criteria
all go downward indicating that the agents autonomously learn to construct fuzzy systems with
considerations of both the accuracy and interpretability within 100 iterations. It is mainly
because that the NSGA-II algorithm is applied and the selection mechanism in NSGA-II is
an elitism mechanism. So the four criteria are optimized simultaneously. On the other hand,
the tendency curve is sawtoothed means that there is a trade-off between the accuracy and
interpretability of fuzzy systems. Also we give the Pareto front [4] after 100 iterations of the
evolution. Pareto optimum is the most commonly accepted term used in the literature of multiple
objective optimization. The Pareto optimal is defined as: A vector of decision variables ~x∗ ∈ F is
Pareto optimal if there does not exist another ~x ∈ F such that fi(~x) ≤ fi(~x∗) for all i = 1, · · · , k
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Fig. 8: Input u(k), unforced system g(k), and output y(k) of the plant in (21)

and fj(~x) < fj(~x∗) for at least one j. It is based on the minimization problems and F denotes
the decision variable space and fi is one of the k function objectives. This definition says
that ~x∗ is Pareto optimal if there exists no feasible vector of decision variables ~x ∈ F which
would decrease some criteria without causing a simultaneous increase in at least one other
criterion. Unfortunately, this concept almost always gives not a single solution, but rather a set
of solutions called the Pareto optimal set. The vectors ~x∗ corresponding to the solutions included
in the Pareto optimal set are called non-dominated. The plot of the objective functions whose
non-dominated vectors are in the Pareto optimal set is called the Pareto front. Figure 10 shows
the trade-off among the multiple objectives within the non-dominated fuzzy system solutions.
The upper left subfigure illustrates the trade-off relation between the accuracy and fuzzy sets
number, the upper right subfigure shows the trade-off between that accuracy and fuzzy rules
number, the lower left subfigure for the trade-off between the accuracy and fuzzy rules total
length and the lower right one shows the trade-off among three objectives: accuracy, fuzzy sets
number as well as fuzzy rules number. There are 14 non-dominated solutions out of the forty
(only 9 different forms). Then we use the 14 non-dominated fuzzy system solutions to test the
validation data set. Figure 11 shows the test results. For comparison, we use all the forty fuzzy
system solutions to test the validation data set and show the non-dominated solutions based on
the test accuracy and the other three criteria in Figure 12. There are 8 non-dominated solutions
(only 3 different forms) associated with the test data. In Table I, we compare our results with
those of other methods in the literature.

In this example, we use the first-order TS fuzzy system, i.e., the TS fuzzy system with the
linear consequents. And all the models of the compared methods in [15,28,29,35,38,39] are of the
TS fuzzy systems. However, not all of the models have the linear form of consequents, some of
them have the singleton form. We listed the consequent type in Table I. Because the first-order
TS fuzzy system is applied, so the recursive least square method is very suitable to calculate the
rule consequents. The training iteration number of the recursive least square method is identical
to the number of training sample data (i.e., 200 in Example A) for each generation. We also list
the number of generations performed by our approach and the compared methods (except the
methods that do not use the evolutionary algorithm). The non-dominated solutions about test
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data are given in Table II. For brevity, the fuzzy distribution and the fuzzy rules expression are
not given in this paper.

Fig. 9: Trends of average accuracy, fuzzy sets number, rules
number, and rule base total length of the plant in (21)

Fig. 10: Pareto front about the fuzzy systems of the plant in
(21)

Fig. 11: Test results of the non-dominated fuzzy systems of the
plant (21)

Fig. 12: Pareto front about the fuzzy systems of the plant in
(21) for the test data set
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TABLE I. Fuzzy models of the nonlinear plant of example A

Ref. No. of Rules No. of Sets Rules Consequent MSE MSE No. of
leng. Train Test generation

[35] 40 rules (initial) 40 Gauss. 80 Singleton 3.2884e-4 6.9152e-4 /
28 rules (optimized) 28 Gauss. 56 Singleton 3.3299e-4 5.9595e-4 100

[39] 25 rules (initial) 25 Gauss. 50 Singleton 2.3092e-4 4.0717e-4 N/A
20 rules (optimized) 20 Gauss. 40 Singleton 6.8341e-4 2.3836e-4 N/A

[38] 36 rules (initial) 12 B-splines 72 Singleton 2.7743e-5 5.1163e-3 N/A
23 rules (optimized) 12 B-splines 46 Singleton 3.1746e-5 1.4776e-3 N/A

36 rules (initial) 12 B-splines 72 Linear 1.9465e-6 2.9211e-3 N/A
24 rules (optimized) 12 B-splines 48 Linear 1.9835e-6 6.4120e-4 N/A

[29] 7 rules (initial) 14 triangular 14 Singleton 1.6e-2 1.2e-3 /
7 rules (optimized) 14 triangular 14 Singleton 3.0e-3 4.9e-4 2000

5 rules (initial) 10 triangular 10 Linear 5.8e-3 2.5e-3 /
5 rules (optimized) 8 triangular 10 Linear 7.5e-4 3.5e-4 2000
4 rules (optimized) 4 triangular 8 Linear 1.2e-3 4.7e-4 2000

[28] 5 rules (initial) 10 triangular 10 Linear 4.9e-3 2.9e-3 /
5 rules (optimized) 10 triangular 10 Linear 1.4e-3 5.9e-4 600
5 rules (optimized) 5 triangular 10 Linear 8.3e-4 3.5e-4 600

[15] 5 rules (optimized) 5 trapezoidal 10 Linear 2.0e-3 1.3e-3 N/A
5 rules (optimized) 6 trapezoidal 10 Linear 5.9e-4 8.8e-4 N/A

This paper
solution 1*6 3 rules 2 Gauss2mf. 3 Linear 8.5782e-4 1.2154e-3 100
solution 2*1 3 rules 4 Gauss2mf. 4 Linear 7.4202e-4 1.7401e-3 100
solution 3*1 10 rules 5 Gauss2mf. 15 Linear 4.5181e-5 2.7872e-3 100
solution 4*1 4 rules 3 Gauss2mf. 5 Linear 2.6503e-4 3.9176e-3 100
solution 5*1 9 rules 5 Gauss2mf. 14 Linear 5.6968e-5 3.0596e-3 100
solution 6*1 5 rules 7 Gauss2mf. 9 Linear 1.2806e-4 4.5867e-3 100
solution 7*1 4 rules 2 Gauss2mf. 4 Linear 3.3038e-4 1.1428e-3 100
solution 8*1 6 rules 3 Gauss2mf. 7 Linear 1.9523e-4 3.5593e-3 100
solution 9*1 5 rules 3 Gauss2mf. 6 Linear 2.1698e-4 5.1407e-3 100

TABLE II. Non-dominated fuzzy models based on the test data in example A
Solutions No. of Rules No. of Sets Rules leng. MSE Train MSE Test

solution 1*6 3 rules 2 Gauss2mf. 3 8.5782e-4 1.2154e-3
solution 2*1 4 rules 2 Gauss2mf. 4 3.3299e-4 8.0147e-4
solution 3*1 5 rules 5 Gauss2mf. 7 7.0870e-4 6.6750e-4

B. Example: Lorenz system
The Lorenz system studied in [19] is described by the following differential equations:

ẋ = −y2 − z2 − a(x− F ) (23)
ẏ = xy − bxz − y + G (24)

ż = bxy + xz − z (25)

In order to make a comparison with the results obtained in [19], we use the same means
to generate the sampling data. That is to say, a = 0.25, b = 4.0, F = 8.0 and G = 1.0. In the
simulation, we predict x(t) from x(t − 1), y(t − 1) and z(t − 1). 400 data points are obtained
from the Equations (23), (24) and (25) using the fourth order Runge-Kutta method with a step
length of 0.05, where 200 pairs of data are used for training and the other 200 for test. The
sampling data pairs are shown in Figure 13.

In this work, we use eight fuzzy set agents and five fuzzy rule sets solutions for each agent,
so there are totally forty fuzzy systems. The trends plot about the same four criteria as those

15



Fig. 13: Input x(t-1), y(t-1) and z(t-1) , output x(t) of the Lorenz system

in Figure 9 is given in Figure 14. Figure 15 shows the trade-off among the multiple objectives
within the non-dominated fuzzy system solutions based on the training data. There are 17
non-dominated solutions out of the forty (only 8 different forms).

Fig. 14: Trends of average accuracy, fuzzy sets number, rules
number, and rule base total length of the Lorenz system. Fig. 15: Pareto front about the Lorenz system

Then we use the 17 non-dominated fuzzy system solutions to test the validation data set.
Figure 16 shows the test results. For comparison, we use all the forty fuzzy system solutions to
test the validation data set and show the non-dominated solutions based on the test accuracy
and the other three criteria in Figure 17. There are 10 non-dominated solutions (only 7 different
forms) associated with the test data. In Table III, we compare the results with that in [19]. The
MSE result is not given in [19], so we use ”N/A” in Table III to denote such a case. However,
we think our results with respect to MSE are satisfying. The non-dominated solutions about
test data are given in Table IV.

From Table III, we can see that the number of fuzzy sets of some solutions is less than the
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number of the input variables, i.e., 3 in the Lorenz system. This indicates that our agent-based
evolutionary approach can use a more compact set of input variables to train the fuzzy system.
For clear speaking, we add the second column named the number of input variables in Table III
to illustrate such cases. The number before the brace represents the number of input variables
of which the corresponding solutions make use, whereas the numbers in the brace mean the
number of fuzzy sets for each input variable in order. For brevity, we give only one complete
rule base related to the solution 8 in Table III. Figure 18 shows the distribution of fuzzy sets.
The fuzzy rules are listed in Table V. From Table V, we know that R1 and R2 are specific rules
and R3 is a general rule, all of them are incomplete rules.

Fig. 16: Test results of the non-dominated fuzzy systems of the
Lorenz system

Fig. 17: Test results of the non-dominated fuzzy systems of the
Lorenz system

TABLE III. Fuzzy models of the Lorenz system
Ref. Input No. of Rules No. of Sets Rules leng. MSE Train MSE Test
[19] 3{4,2,1} 4 rules 7 Gauss. 8 N/A N/A

This paper
solution 1*1 2{0,2,2} 6 rules 4 Gauss2mf. 10 1.2798e-5 3.1480e-5
solution 2*1 2{0,2,2} 4 rules 4 Gauss2mf. 5 8.1136e-5 8.8000e-5
solution 3*1 2{0,1,2} 5 rules 3 Gauss2mf. 6 4.8548e-5 7.4819e-5
solution 4*1 2{0,1,2} 3 rules 3 Gauss2mf. 3 1.6088e-4 1.6160e-4
solution 5*1 2{0,1,2} 3 rules 3 Gauss2mf. 4 1.1023e-4 1.0447e-4
solution 6*2 2{0,1,1} 2 rules 2 Gauss2mf. 2 2.9419e-4 2.6617e-4
solution 7*4 2{0,1,1} 4 rules 2 Gauss2mf. 4 1.4979e-4 1.3927e-4
solution 8*6 2{0,1,1} 3 rules 2 Gauss2mf. 2 2.6085e-4 3.4412e-4
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TABLE IV. Non-dominated fuzzy models based on the test data for the Lorenz system
Solutions No. of Rules No. of Sets Rules leng. MSE Train MSE Test

solution 1*1 6 rules 4 Gauss2mf. 10 1.2798e-5 3.1480e-5
solution 2*1 4 rules 4 Gauss2mf. 5 8.1136e-5 8.8000e-5
solution 3*1 2 rules 2 Gauss2mf. 2 3.0443e-4 2.3970e-4
solution 4*1 5 rules 3 Gauss2mf. 6 4.8548e-5 7.4819e-5
solution 5*1 3 rules 3 Gauss2mf. 3 1.6088e-4 1.6160e-4
solution 6*1 3 rules 3 Gauss2mf. 4 1.1023e-4 1.0447e-4
solution 7*4 4 rules 2 Gauss2mf. 4 1.4979e-4 1.3927e-4

(a) Input Variable 2: y(t-1)
 (b) Input Variable 3: z(t-1)


Fig. 18: Fuzzy sets of Lorenz system

Table V. Rule base for Lorenz system
R1: If y(t− 1) is small, then x(t) = 0.989x(t− 1) + 0.227y(t− 1) + 0.009z(t− 1) + 0.018;
R2: If z(t− 1) is middle, then x(t) = 0.975x(t− 1)− 0.119y(t− 1) + 0.049z(t− 1) + 0.163;
R3: Else x(t) = 0.963x(t− 1) + 0.071y(t− 1) + 0.009z(t− 1)− 0.210.

C. Example: Iris Data
The Iris Data contains 150 pattern instances with 4 attributes from 3 classes available from

the University of California, Irvine (UCI) database [34]. We use all of the data to train ten
fuzzy set agents each of which has eight fuzzy rule sets solutions, so there are totally eighty
fuzzy systems. The trends plot about four criteria including average accuracy (classification
error rate), average fuzzy sets number, average fuzzy rules number, and average fuzzy rule base
total length among the multi-agent system is given in Figure 19. Figure 20 shows the trade-
off among the multiple objectives within the non-dominated fuzzy classifier system solutions
for iris data. There are 13 non-dominated solutions out of the eighty (only 5 different forms
related to the four criteria). Also we compare our results with other works reported in the
literature. The comparative results are shown in Table VI. We also noticed that we can use only
three attributes instead of four to train fuzzy classifier systems resulting in an improvement of
interpretability associated with the compactness issues. We illustrate only one fuzzy classifier
system corresponding to the solution 3 in Table VI owing to the brief considerations. The
distribution of fuzzy sets is shown in Figure 21, and Table VII lists the fuzzy rules.
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Fig. 19: Trends of average accuracy, fuzzy sets number, rules
number, and rule base total length for Iris Data. Fig. 20: Pareto front about the Iris Data

Table VI. Comparison results for Iris Data
Ref. Classification rate Input No. of Sets No. of Rules Rules leng.
[28] 0.973 2{0,0,3,2} 5 3 6
[2] 0.993 4{3,3,3,3} 12 3 12
[10] 0.973 4{5,5,5,5} 20 4.6 N/A
[30] 1.000 4{4,5,4,5} 18 5 18
[37] 0.993 4{3,3,3,3} 12 6 24

This paper
solution 1*8 0.980 3{0,1,1,2} 4 4 5
solution 2*1 0.987 3{0,1,1,2} 4 5 6
solution 3*2 0.987 3{0,1,1,3} 5 4 6
solution 4*1 0.973 3{0,1,1,3} 5 3 8
solution 5*1 0.973 3{0,1,1,2} 4 4 4

Table VII. Rule base for Iris Data
R1: If x2 is middle and x3 is middle, then class 2;
R2: If x4 is small, then class 1;
R3: If x3 is middle and x4 is middle, then class 2;
R4: If x4 is large, then class 3.

(a) Attribute 2: Sepal width
 (b) Attribute 3: Petal length
 (c) Attribute 4: Petal width


Fig. 21: Fuzzy sets of fuzzy classifier system for Iris Data
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From Figures 9, 14 and 19, we can see that our agent-based approach can guarantee good
convergence among the multiple objectives. The objectives considering both the accuracy and
interpretability in our research context can co-evolve in progress together. Another advantage of
our approach is that we can obtain multiple non-dominated fuzzy systems concentrating on both
the accuracy and interpretability of fuzzy systems. It is obviously illustrated in Figures 10, 15
and 20, and quantified in Tables I, III and VI. From these tables, we also demonstrate that the
accuracy of our results is compatible with or better than other methods known in the literature.
And more important, most solutions that we get have better interpretability. The trade-off
between accuracy and interpretability of fuzzy systems is also easily understood. Different sets
of fuzzy rules and fuzzy sets that emphasize different aspects of interpretability and accuracy
may be built. In this work, the number of fuzzy variables can be automatically learned, for
example, only three out of four input variables participate in the fuzzy system construction for
the Lorenz system, and only three out of four attributes play roles in the fuzzy classifier system
construction for the iris data. This leads to more compactness not only associated with the
number of fuzzy sets, but also related to the number of fuzzy variables. We are inspired by this
aspect that more important variables can be determined by the proposed approach and rule
based systems can be built based on these important variables only. The irrelevant variables are
removed from the system construction. Thus the complexity of rule based system construction
is reduced greatly, especially for the high dimensional problems. We hope that it will work in
the real world nonlinear plant modeling and classification problems, and so on. It will be worth
paying much attention in future research.
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Fig. 22: Example A using one agent
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Fig. 23: Example B using one agent
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Fig. 24: Example C using one agent

In order to show the effectiveness of the multi-agent approach, we did the simulation ex-
periments based on only one agent, i.e., just use one agent to learn the fuzzy rule base without
changing other parameters. For brevity, we only give the trends plot of Example A, B and C in
Figures 22, 23 and 24, respectively. We compare the trends plot with those of the multi-agent
approach (see Figures 9, 14, and 19). We can see that the average classification rate, fuzzy sets,
fuzzy rules number, and fuzzy rules total length of the evolutionary approach using multiple
agents are better than those of the single agent approach and have a better convergency. It
means that the multi-agent approach has good abilities to explore interpretable rule base with
the accuracy consideration based on the obtained fuzzy sets. In the multi-agent system the
fuzzy sets number can reduce gradually with the co-evolution of the other three criteria. The
interpretability improves related to the compactness issue. When multiple agents participate in
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the evolutionary process, they can cooperate and compete with each other to exchange the fuzzy
sets information. Hence, the multi-agent approach can obtain a more compact fuzzy system. It
is also a main goal for us to design such a multi-agent mechanism: to explore more appropriate
fuzzy sets distribution and uses a smaller number of fuzzy sets.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an agent-based evolutionary approach to construct interpretable
fuzzy systems. In the multi-agent system, the Fuzzy Set Agents autonomously implement the
intra-tasks: i) use the hierarchical chromosome formulation and interpretability-based regula-
tion strategy to obtain compact and distinguishable fuzzy sets distribution, and ii) apply the
Pittsburgh-style approach based on the obtained fuzzy sets to extract interpretable fuzzy rules
by means of NSGA-II multi-objective decision making method and the recursive least square
method for function approximation problems as well as the heuristic procedure for classification
problems. Then the fuzzy set agents cooperate with each other by exchanging fuzzy sets in-
formation and create offspring agents. The arbitrator agent evaluates the parent and offspring
agents based on the criteria on accuracy and interpretability. During competition the elite
agents survive to the next population and obsolete ones are dead. Simulation results show that
our proposed approach can generate multiple fuzzy systems with a good trade-off between the
accuracy and interpretability. In future research, we will concentrate ourselves on the following
issues to improve the performance of our agent-based evolutionary approach: 1) Further study-
ing the interaction mechanism among the agents to realize a more effective manner associated
with cooperation and competition. 2) Appling some data mining techniques related to dimen-
sion reduction such as SUD [3], RELIEF, and SCM [6], etc to our multi-agent system, hopefully
using more important attributes to train the agents leading to a more compact fuzzy system
construction.
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