
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 3, MAY 2008 397

Pareto-Based Multiobjective Machine Learning:
An Overview and Case Studies

Yaochu Jin, Senior Member, IEEE, and Bernhard Sendhoff, Senior Member, IEEE

Abstract—Machine learning is inherently a multiobjective task.
Traditionally, however, either only one of the objectives is adopted
as the cost function or multiple objectives are aggregated to a scalar
cost function. This can be mainly attributed to the fact that most
conventional learning algorithms can only deal with a scalar cost
function. Over the last decade, efforts on solving machine learn-
ing problems using the Pareto-based multiobjective optimization
methodology have gained increasing impetus, particularly due to
the great success of multiobjective optimization using evolutionary
algorithms and other population-based stochastic search meth-
ods. It has been shown that Pareto-based multiobjective learning
approaches are more powerful compared to learning algorithms
with a scalar cost function in addressing various topics of ma-
chine learning, such as clustering, feature selection, improvement
of generalization ability, knowledge extraction, and ensemble gen-
eration. One common bene�t of the different multiobjective learn-
ing approaches is that a deeper insight into the learning problem
can be gained by analyzing the Pareto front composed of multi-
ple Pareto-optimal solutions. This paper provides an overview of
the existing research on multiobjective machine learning, focus-
ing on supervised learning. In addition, a number of case studies
are provided to illustrate the major bene�ts of the Pareto-based
approach to machine learning, e.g., how to identify interpretable
models and models that can generalize on unseen data from the ob-
tained Pareto-optimal solutions. Three approaches to Pareto-based
multiobjective ensemble generation are compared and discussed in
detail. Finally, potentially interesting topics in multiobjective ma-
chine learning are suggested.

Index Terms—Ensemble, evolutionary multiobjective optimiza-
tion, generalization, machine learning, multiobjective learning,
multiobjective optimization, neural networks, Pareto optimization.

I. INTRODUCTION

M ACHINE learning is concerned with the development
of computer algorithms and techniques that are able to

All learning algorithms perform model selection and param-
eter estimation based on one or multiple criteria. In supervised
learning, the common criterion is an error function that re�ects
the approximation quality, whereas in clustering, the similarity
between the elements in the same cluster (intercluster similar-
ity) should be maximized and the similarity of the elements in
different clusters (intracluster similarity) should be minimized.
In reinforcement learning, the criterion is a value function that
predicts the reward to perform a given action in a given state.
Therefore, all learning problems can be considered as an opti-
mization problem. Hereafter, we restrict our discussions mainly
to supervised learning and data clustering, since little work has
been reported on multicriterion reinforcement learning with few
exceptions [3]. In addition, we term any learning criterion an

benchmark problems are outlined in Section V. Case studies on
how to identify interpretable models from the achieved Pareto
front, how to select models that are most likely to generalize on
unseen data, and how to generate ensembles using the Pareto-
based approach are described in Section VI. A summary and
outlook of the paper is provided in Section VII.

II. S

INGLE- AND MULTIOBJECTIVE LEARNING

We divide learning algorithms into three categories, namely,
single-objective learning, scalarized multiobjective learning,
and Pareto-based multiobjective learning.

1094-6977/$25.00 © 2008 IEEE

JIN AND SENDHOFF: PARETO-BASED MULTIOBJECTIVE MACHINE LEARNING 401

a scalar objective function [8], [55]. In [52], the Pareto-based
approach is adopted to generate diverse and accurate ensembles,
where the following two objectives are minimized,

f 1 =
1
N

N�

i =1

(y(i) − yd(i))2 (14)

f 2 =
N�

i =1

(yk (i) − y(i))

M�

j �=k,j =1

(yj (i) − y(i))

 (15)

where yk (i) is the output of the kth ensemble member, y(i) is
the output of the ensemble for the i th training sample, N is the
number of training samples, and M is the number of members
in the ensemble. This research has been extended to a frame-
work for evolving ensembles that is composed of three levels of
evolution [56]. On the first level, a mixture of learning models,
such as multilayer perceptrons, radial basis function networks,
and support vector machines are evolved. On the second level,
different training datasets are used for evolving the hybrid en-
sembles produced on the first level. On the third level, all subsets
of homogenous learning models of the hybrid ensembles gen-
erated on the second level are evolved separately to minimize
training error and correlation between the ensemble members.
In each iteration, the current ensemble, which consists of each
of the different types of models, is archived if it dominates the
previous best ensemble based on training error and test error.
The ensemble in the archive serves as the final hybrid ensemble.

A different idea to take advantage of Pareto-based learning
for ensemble generation has been presented in [57], where the
training data is divided into two sets and the errors on the two
datasets are used as two objectives for learning

f 1 =
N 1�

i =1

�
y(i) − yd

1 (i)
�2

(16)

f 2 =
N 2�

i =1

�
y(i) − yd

2 (i)
�2

(17)

where yd
j are the training data in dataset j , j = 1, 2, N1 and N2

are the size of the datasets. One should take care that the neural
network model used should be sufficiently small in order not to
overfit both datasets.

Another idea suggested for generating neural network en-
sembles is to include the complexity measure as the second
objective [25], [26]

f 1 =
N�

i =1

(y(i) − yd(i))2 (18)

f 2 = C (19)

where C is the NC in the neural network. In this way, the diver-
sity of the networks is achieved in terms of different network
structures, which is ensured by the fact that ensemble members
always have different NC. Simulation results on both regression
and classification problems show that the approach is effective
in generating neural network ensembles. It should be noticed,
however, that very simple Pareto-optimal neural networks will

be generated whose error on the training data can be very large.
These networks should not be included in the ensemble if mod-
els of high accuracy are targeted. One question that has not been
answered in [25] and [26] is how to choose ensemble members
from the nondominated solutions. We will come back to this
issue again in the case studies.

The method for multiobjective cooperative coevolution of the
neural networks in [29] has also been applied to generating neu-
ral network ensembles [58]. In case of ensemble generation, one
population evolves single neural networks and the other evolves
neural network ensembles. For the population evolving single
networks, objectives with respect to the performance of the sin-
gle network, the performance on difficult patterns (measured,
e.g., by the number of ensembles misclassifying it), and the
average performance of the ensembles in which the network is
present can be taken into account for evaluating the performance
of the single networks. In addition, network complexity, ability
to cooperate, and diversity are other objectives to consider. In ad-
dition to the correlation measure used in [52], functional diver-
sity, which measures the average Euclidean distances among the
outputs of two neural networks, mutual information between the
output of two networks, and the Yule’s Q statistics [59], which
measures the correlation of the errors made by two models, are
also considered. For the ensemble population, performance and
ambiguity are two objectives to optimize. It has been shown that
the generalization performance of the ensembles generated us-
ing the multiobjective approach is significantly better than that
of the ensembles generated by classical approaches.

Pareto-based generation of ensembles for radial basis func-
tion networks [60] and fuzzy rule systems [61] have also been
reported.

E. Miscellaneous

Much early work on Pareto-based multiobjective learning
has been motivated by specific applications, where multiple
objectives have to be considered even without thinking about
generalization. For example, in generating the ROC curve for
classifiers, both the true positive rate (TPR) and the false positive
rate (FPR) are to be minimized. In [62], the Niched Pareto
GA [63] was employed to generate the ROC curves of neural
network classifiers [62]. It has been shown that better results
can be obtained by using the Pareto-based approach compared
to the traditional method for generating ROC curve usually by
changing the threshold of the neural classifier after training.
Notice that traditionally, ROC analysis is just a method for
evaluating a given classifier, but in the Pareto-based approach,
the classifiers on the ROC curve are different. Most recently, the
generalization ability of neural classifiers using the Pareto-based
approach to ROC curve generation has been studied in [64], and
Pareto-based multiobjective multiclass ROC analysis has been
investigated in [65].

Systems control is another area in which multiple objectives
need to be satisfied. In [66], Pareto-based evolutionary pro-
gramming was used to minimize the undershooting and overall
tracking error of a neural-network-based controller. A number

402 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 3, MAY 2008

of Pareto-optimal solutions are obtained and the control perfor-
mance of some typical Pareto-solutions is analyzed.

Supervised feature selection is one of the machine learning
tasks where a tradeoff between the number of selected features
and the performance of the learning model using the features
must be considered. As a result, the Pareto-based multiobjective
learning has been investigated [67]–[69].

IV. MULTIOBJECTIVE UNSUPERVISED LEARNING

In this section, we discuss existing research work on Pareto-
based multiobjective unsupervised learning, mainly multiobjec-
tive data clustering. In [70], four objectives are considered in
Pareto-based evolutionary data clustering. The first objective is
concerned with the cluster cohesiveness, which favors dense
clusters, the second objective is to maximize the separateness
between the clusters measured by their distance from the global
centroid, the third objective is meant to reduce the number of
clusters, and the fourth one minimizes the number of selected
features. Rather than combining the objectives, a Pareto-based
evolutionary algorithm has been employed to achieve multi-
ple Pareto-optimal solutions. Through analyzing the individual
Pareto-optimal solutions, significant features and an appropriate
number of clusters can be identified.

The advantage of Pareto-based data clustering has been con-
vincingly demonstrated in [71], where the number of clusters
can be determined automatically by analyzing the Pareto front.
In that paper, two objectives are minimized to reflect the com-
pactness of clusters and the connectedness of data points. The
cluster compactness is described by the overall deviation of a
partitioning and the connectedness checks the degree to which
data points in a neighborhood are assigned to the same cluster

f 1 =
�

Ck ∈C

�

x i ∈Ck

||xi − ck ||2 (20)

f 2 =
N�

i =1

L�

j =1

� ij (21)

where C = {C1 , C2 , . . . , CK } is a union of all clusters, ck is the
center of cluster Ck , k = 1, 2, . . . , K , xi is a data point assigned
to cluster Ck , K is the number of clusters, L is the number of
data points in a predefined neighborhood, and � ij is defined by

� ij =

1
j

, if xi and NNj (xi) are not in the same cluster

0, otherwise
(22)

where NNj (xi) is the j th nearest neighbor of data point xi .
The Pareto-optimal solutions trading off between deviation

and connectivity are plotted in such a way that the number of
clusters contained in the Pareto-optimal solutions increases from
left to right. It is argued that the overall deviation decreases with
the increasing number of clusters and when the cluster number
is larger than the “true” number of clusters, the gain in devia-
tion minimization will be minor while the cost in connectivity
increases rapidly. Thus, the Pareto-optimal solution that deliv-
ers the maximal gain in performance against the increase in the

Fig. 1. Coding of the structure and parameters of neural networks using a
connection matrix and a weight matrix.

Fig. 2. Example of a connection matrix and its corresponding neural network
structure.

number of clusters provides the correct number of clusters, as
suggested in [72].

V. CASE STUDIES: EXPERIMENTAL SETUP

A. Neural Network Model

Feedforward neural networks with one hidden layer are used
in the case studies. The hidden neurons are nonlinear and the
output neurons are linear. The activation function used for the
hidden neurons is as follows:

g(z) =
x

1 + |x| . (23)

In the optimization, the maximum of hidden nodes is set to 10.
Weights are initialized between −0.2 and 0.2.

B. Evolutionary Algorithms for Pareto-Based Learning

1) Coding of Neural Networks: A connection matrix and
a weight matrix are employed to describe the structure and
the weights of the neural networks, see Fig. 1. The connection
matrix specifies the structure of the network, whereas the weight
matrix determines the strength of each connection. Assuming
that a neural network consists of M neurons in total, including
the input and output neurons, then the size of the connection
matrix is M × (M + 1), where an element in the last column
indicates whether a neuron is connected to a bias value. In the
connection matrix, if element cij , i = 1, . . . , M, j = 1, . . . , M
equals 1, it means that there is a connection between the i th and
j th neuron and the signal flows from neuron j to neuron i . If
j = M + 1, it indicates that there is a bias in the i th neuron.
Fig. 2 illustrates a connection matrix and the corresponding
network structure. It can be seen from the figure that the network

JIN AND SENDHOFF: PARETO-BASED MULTIOBJECTIVE MACHINE LEARNING 403

Fig. 3. Framework for evolutionary multiobjective optimization of neural
networks.

has two input neurons, two hidden neurons, and one output
neuron. Besides, both hidden neurons have a bias.

2) Mutations of Structure and Weights: Evolutionary algo-
rithms have widely been employed to optimize both the struc-
ture and parameters of neural networks, often combined with a
gradient-based local search method [73]. The framework for
evolutionary multiobjective optimization of neural networks
employed in our case studies is shown in Fig. 3. In compar-
ison to conventional evolutionary optimization, we note that
only mutation operations are used in the framework for vary-
ing the structure and parameters of neural networks, which are
specific to neural networks, including inserting a new neuron or
deleting an existing neuron, adding or removing a connection
between two neurons. A Gaussian mutation is applied to the
weights

∆wij = N (0, � w) (24)

where wij denotes the weight connecting neuron j and
neuron i , � w is the standard deviation of the Gaussian
distribution.

3) Lifetime Learning: After mutation, lifetime learning us-
ing an improved version of the Rprop algorithm [74] has been
employed to fine tune the weights. After lifetime learning, the
fitness of each individual regarding the approximation error (f 1)
is updated. In addition, the weights modified during the lifetime
learning are encoded back to the chromosome, which is known
as the Lamarckian type of inheritance.

The Rprop learning algorithm [75] is believed to be a fast
and robust learning algorithm. In each iteration, the weights are
modified in the following manner

∆w(t)
ij = −sign

�
�E (t)

�w ij

�
∆(t)

ij (25)

where sign(·) is the sign function, ∆(t)
ij ≥ 0 is the step size,

which is initialized to ∆0 for all weights. The step size for each

weight is adjusted as

∆(t)
ij =

� +∆(t−1)
ij , if

�E (t−1)

�w ij
× �E (t)

�w ij
> 0

� −∆(t−1)
ij , if

�E (t−1)

�w ij
× �E (t)

�w ij
< 0

∆(t−1)
ij , otherwise

(26)

where 0 < � − < 1 < � + . To prevent the step sizes from becom-
ing too large or too small, they are bounded by ∆min ≤ ∆ij ≤
∆max .

After the weights are updated, it is necessary to check if the
partial derivative changes sign, which indicates that the previous
step might be too large, and thus, a minimum has been missed.
In this case, the previous weight change should be retracted

∆w(t)
ij = −∆(t−1)

ij , if
�E (t−1)

�w ij
× �E (t)

�w ij
< 0. (27)

Recall that if the weight change is retracted in the t th iteration,
the �E (t) /�w ij should be set to 0.

In reference [74], it is argued that the condition for weight
retraction in (27) is not always reasonable. The weight change
should be retracted only if the partial derivative changes sign and
if the approximation error increases. Thus, the weight retraction
condition in (27) is modified as follows:

∆w(t) = −∆(t−1)
ij , if

�E (t−1)

�w ij
× �E (t)

�w ij
< 0 and

E (t) > E (t−1) . (28)

It has been shown on several benchmark problems that the
modified Rprop (termed as Rprop+) exhibits consistently better
performance than the Rprop algorithm [74].

4) Selection: The most significant difference of multiobjec-
tive optimization to scalar optimization is the selection method.
In our research, the selection method from NSGA-II [76] is
adopted, which consists of four major steps. First, the parent and
offspring populations are combined. This implies that NSGA-II
is an elitism. Second, the combined population is sorted ac-
cording to the nondominance ranks. During the ranking, non-
dominated solutions in the combined population are assigned
a rank 1, which belongs to the first nondominated front. These
individuals are removed temporally from the population, and
the nondominated individuals in the rest of the population are
identified, which consists of the second nondominated front of
the population and are assigned a rank 2. This procedure repeats
until all individuals in the combined population are assigned
with a rank from 1 to R, assuming that R nondominated fronts
can be identified in total. Third, a crowding distance reflecting
the crowdedness in the neighborhood of a particular solution is
calculated. The crowding distance of solution i in the nondom-
inated front j, (j = 1, . . . , R) is the distance between the two
neighbors of solution sj

i in the objective space

dj
i =

m�

k=1

|f k (sj
i−1) − f k (sj

i +1)| (29)

406 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 38, NO. 3, MAY 2008

Fig. 8. Pareto-optimal network model with five connections for the breast
cancer data.

Fig. 9. Typical Pareto-front obtained for the diabetes data composed of 37
solutions.

classification threshold to 0.5, the following rule can be obtained
with a correct classification rate of 92.4% on all instances.

If x2 ≤ 0.3, then benign

otherwise malignant.

The next simple Pareto-optimal neural network has five con-
nections, in which both x2 and x6 are chosen as input features
(see Fig. 8). The MSE of the model is 0.029. From this neural
network, the following two rules can be extracted:

If 14 x2 + 8.55 x6 ≤ 5.81, then benign

If 14 x2 + 8.55 x6 ≥ 7.55, then malignant.

Using these two rules, the correct classification rate is 97.2%
on 680 instances with the rest 19 instances undetermined. If the
threshold is set to 0.5, the following rule can be obtained with a
correct classification rate of 96.4% on all instances:

If 14 x2 + 8.55 x6 ≤ 6.45, then benign

otherwise malignant.

2) Diabetes Data: The same empirical study is conducted
on the diabetes data. The achieved Pareto front is shown in
Fig 9.

Same as the breast cancer data, the simplest Pareto-optimal
solution contains three connections and learns the mean of the
output value. The two simple Pareto solutions with at least
one attribute chosen are plotted in Figs. 10 and 11, respec-
tively. The MSEs of the two simple network models are 0.17
and 0.16.

Fig. 10. Pareto-optimal network model with four connections for the diabetes
data.

Fig. 11. Pareto-optimal network model with five connections for the diabetes
data.

From the neural network with four connections (see Fig. 10),
the following two rules can be extracted:

If x2 ≤ 0.83, then positive

If x2 ≥ 0.56, then negative.

By applying the aforementioned two rules, we are able to
make a decision on 413 instances with a correct classification
rate of 85.4%. The rest 355 instances cannot be determined with
these two rules.

If we set the threshold to 0.5, the following rule is obtained:

If x2 ≤ 0.72, then positive

otherwise negative.
(37)

The correct classification rate using the aforementioned rule is
75.0% on all 768 instances.

The following rules can be obtained for the neural network in
Fig. 11, when the threshold is set to 0.75 and 0.25:

If 3.77 x2 + 2.67 x6 ≤ 4.54, then positive

If 3.77 x2 + 2.67 x6 ≥ 3.46, then positive.

With these two rules, the correct classification rate is 85.4%
with the rest 308 instances undecided. If the threshold is set to
0.5, we then have the following rule:

If 3.77 x2 + 2.67 x6 ≤ 3.97, then positive

otherwise negative.
(38)

From the aforementioned rule, the correct classification rate on
all 768 instances is 77.0%.

3) Iris Data: The Pareto front from the Iris data is presented
in Fig. 12, which consists of 20 solutions (two Pareto optimal
solutions have the same MSE and complexity). Again, the sim-
plest network with seven connections approximates the mean
value of the output.

The two Pareto-optimal networks with eight connections are
plotted in Figs. 13 and 14, respectively. From the figures, we

