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Social learning plays an important role in behavior learning among social animals. In
contrast to individual (asocial) learning, social learning has the advantage of allowing
individuals to learn behaviors from others without incurring the costs of individual
trials-and-errors. This paper introduces social learning mechanisms into particle swarm
optimization (PSO) to develop a social learning PSO (SL-PSO). Unlike classical PSO variants
where the particles are updated based on historical information, including the best solu-
tion found by the whole swarm (global best) and the best solution found by each particle
(personal best), each particle in the proposed SL-PSO learns from any better particles
(termed demonstrators) in the current swarm. In addition, to ease the burden of parameter
settings, the proposed SL-PSO adopts a dimension-dependent parameter control method.
The proposed SL-PSO is first compared with five representative PSO variants on 40
low-dimensional test functions, including shifted and rotated test functions. The scalability
of the proposed SL-PSO is further tested by comparing it with five state-of-the-art
algorithms for large-scale optimization on seven high-dimensional (100-D, 500-D, and
1000-D) benchmark functions. Our comparative results show that SL-PSO performs well
on low-dimensional problems and is promising for solving large-scale problems as well.

� 2014 Published by Elsevier Inc.
1. Introduction

Particle Swarm Optimization (PSO) is one powerful and widely used swarm intelligence paradigm introduced by Kennedy
and Eberhart in 1995 for solving optimization problems [43]. In PSO, it is assumed that each particle is able to memorize the
best position found in history, i.e., the best position that has ever been found by the whole swarm, termed global best, and the
best position that has ever been found by each particle, known as personal best. To find the global optimum of the optimi-
zation problem, the particles learn from the personal best and global best positions. Specifically, the learning mechanisms in
the canonical PSO can be summarized as follows:
Viðt þ 1Þ ¼ xViðtÞ þ c1R1ðtÞðpbestiðtÞ � XiðtÞÞ þ c2R2ðtÞðgbestðtÞ � XiðtÞÞ; ð1Þ

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ; ð2Þ
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where t is the generation number, ViðtÞ and XiðtÞ represent the velocity and position of the i-th particle, respectively; x is
termed inertia weight [71], c1 and c2 are the acceleration coefficients [20], R1ðtÞ and R2ðtÞ are two vectors randomly gener-
ated within ½0;1�n, with n being the dimension of the search space; pbestiðtÞ and gbestðtÞ denote the personal best of the i-th
particle and the global best of the swarm, respectively.

Although PSO has witnessed rapid developments over the past decades and has been successfully applied to a number of
applications, e.g., water distribution network design [56], resource allocation [24], task assignment [30], maximum power
point tracker for photovoltaic system [36], optimal control [67], DNA sequence compression [100] and reconstruction of gene
regulatory network [60], image processing [69], text clustering [6] and many others [75,34,52], its performance is still
unsatisfying when the optimization problem has a large number of local optima or when the optimization problem is
high-dimensional and non-separable [87]. The poor performance of PSO can largely be attributed to its weak robustness
to various problem structures [84]. In order to enhance the search performance of the canonical PSO, numerous PSO variants
have been proposed, which can be roughly divided into the following five categories.

The first category adopts an adaptive control strategy of the parameters in PSO. As shown in (1), x; c1 and c2 are the three
control parameters in PSO. x, called the inertia weight, was introduced as a constant in [72] and an adaptive parameter in
[73]. Another important modification of x is the introduction of fuzzy inference [74]. Adaptation strategies for tuning the
acceleration coefficients, c1 and c2, have also been proposed [64,11]. Apart from adapting x; c1 and c2, additional parameters
to help regulate these three parameters have also been introduced [95,33].

Hybrid PSO algorithms, which can be categorized into the second category of PSO variants, combine PSO with other
search strategies, such as genetic algorithms [65,39,80], differential evolution [39], and ant colony optimization [70]. Other
specific search operators have also been incorporated into PSO, including mutation operators [29,51,61], local search oper-
ators [83,86], and some nature-inspired operators as well, such as the niching PSO [5], culture-based PSO [13] and the aging
theory inspired PSO (ALC-PSO) [8].

The third category of PSO variants introduces new topological structures in neighborhood control to enhance swarm
diversity, thereby alleviating premature convergence [76,41]. Several topological structures have been proposed [44], e.g.,
the ring topology and the von Neumann topology. In [53], a fully informed PSO (FIPS) was developed, where the update
of each particle is based on the historical best positions of several neighbors instead of gbest or pbest. Another representative
example is the comprehensive learning PSO (CLPSO) introduced in [49], where particles update each decision variable by
learning from different historical personal best positions. More recently, a distance-based locally informed particle swarm
optimizer has been proposed to tackle multi-modal problems [63].

Multi-swarm PSO belongs to the fourth category. The main idea behind multi-swarm PSO variants is to enhance swarm
diversity by exchanging information between different swarms. For example, the dynamic multi-swarm PSO (DMS-PSO) [48]
was proposed with a dynamically changing neighborhood structure. In [81], a cooperative multi-swarm PSO (CPSO) is pro-
posed to solve large-scale optimization problems by dividing the decision variables into several sub-components. Similarly,
the recently proposed cooperative coevolving PSO (CCPSO2) for large-scale optimization adopts the multi-swarm paradigm
as well [46]. Additional multi-swarm PSO variants have been reported in [2,92,19,10].

The fifth category of PSO variants is designed to perform effective search using limited computational cost and memory
usage. Unlike the first four categories, these PSO variants aim to simplify PSO to enhance its robustness by taking into
account the constraints of the device on which the PSO is running, rather than introducing additional mechanisms to
enhance the search performance for specific problems. Most PSO variants in this category are based on a probabilistic model.
The earliest model-based PSO was proposed by Kennedy [42], called the Bare Bones PSO (BBPSO), which uses Gaussian dis-
tributions instead of the velocity equation to update the particle positions. In [99], a simplified intelligent single particle
optimization (ISPO) was proposed to explore the search space using a single particle instead of a swarm, and some further
discussions on the ISPO can also be found in a recently published literature [35]. In [77], a fitness estimation strategy has
been introduced based on the relationship between the positions of the particles to reduce the required number of fitness
evaluations. Most recently, a competitive swarm optimizer based on pairwise competition between particles was reported
[9], which has been shown to perform effectively for large scale optimization problems and needs much less memory com-
pared to the standard PSO.

PSO algorithms are often believed to be different from other population-based meta-heuristics in that PSO does not adopt
an explicit selection mechanism. However, as pointed out in [7,58], most PSO variants can also be captured by a generic
framework that is valid for almost all population-based meta-heuristics including evolutionary algorithms such as genetic
algorithms (GAs) and swarm intelligence algorithms such as PSO. A slight difference lies in the fact that most PSO algorithms
apply selection implicitly, e.g. by updating the personal best solutions and the global best solution only. While evolutionary
algorithms such as GAs perform selection by comparing a list of solutions for multiple times, PSO compares solutions pair-
wise. As suggested in [9,58], pairwise comparison in selection can not only reduce memory usage, but also make it easier to
adopt a compact encoding.

This paper proposes a new PSO variant by further modifying the implicit selection mechanism in PSO, where neither a
global best solution nor personal best solutions will be stored. Instead, the swarm is sorted according to the fitness of the
particles and all particles except for the best one will be updated by learning from any particle whose fitness is better. In
a sense, selection in the proposed algorithm is implicitly performed in the sorting process.

Learning and imitating the behaviors of better individuals in the population, which is known as social learning, can widely
be observed among social animals. Social learning, different from individual (asocial) learning, has the advantage of allowing
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individuals to learn behaviors from others without incurring the costs of individual trial and error, which is able to accelerate
learning rates [45], especially when the target (behavior) to learn is complex. More specifically, individual learning is a
process of trial and error, whilst social learning is to take advantage of mechanisms such as imitation, enhancement and
conditioning [27].

Due to the appealing properties of social learning, it is quite natural to apply the social learning mechanisms to popula-
tion-based stochastic optimization. In 2011, Oca and Stutzle proposed an incremental social learning framework, which
consists of a growing population of agents that learn socially when they become part of the main group and learn individ-
ually when they are already part of it [57]. To the best of our knowledge, this is the earliest attempt to explicitly apply social
learning mechanism to optimization. However, the proposed framework is very generic and does not involve any concrete
social learning mechanism such as imitation, which plays an important role in natural social learning. Moreover, the
proposed framework is not able to work independent of an existing optimizer [15], e.g., a PSO variant.

In this paper, we introduce social learning mechanisms into PSO, resulting in a substantially different PSO variant, which is
termed social learning PSO (SL-PSO). Unlike most PSO variants, SL-PSO is performed on a sorted swarm. Instead of learning
from the historical best positions, the particles learn from any better particles (demonstrators) in the current swarm. To ease
the burden of parameter setting, a dimension-dependent parameter control strategy has been suggested in the proposed SL-PSO
to enhance its robustness to the search dimensionality (the number of decision variables) of the problem to be optimized.

The rest of this paper is organized as follows. Section 2 describes the proposed SL-PSO in detail, together with an analysis
of time complexity and a proof of convergence. In Section 3, the performance of the SL-PSO is examined by comparing its
performance with a few widely reported optimization algorithms on low-dimensional and large-scale optimization prob-
lems. Finally, conclusions are drawn in Section 4.

2. A social learning particle swarm optimizer

In the following, a brief account of the sociological background for the proposed SL-PSO will be given. Then, a detailed
description of SL-PSO will be provided together with an analysis of the computational complexity and a convergence proof.

2.1. Sociological background

In 1921, some British birds were first seen to open milk bottles in the small town of Swaythling. In the following 25 years,
such observations had been continually reported from numerous other sites spreading all over the Great Britain and even
some other areas in the European continent. This is the first evidence of social learning [22], where the birds are believed
to learn to open milk bottles by observations and interactions with other birds, instead of learning by themselves [28].

During the past decades, various mechanisms have been proposed and discussed in social learning theory, e.g., stimulus
enhancement and local enhancement [27], observational conditioning [54], contagion [93] and social facilitation [3]. Among
these mechanisms, the most interesting social learning mechanism is imitation, which is considered to be distinctive from
other social learning mechanisms [94], because imitation, which operates across a whole community, could lead to popula-
tion-level similarities of behavior such as culture or tradition [85]. Such population-level similarities may imply convergence
of a dynamic system, thus providing its essential applicability in an evolutionary algorithm.

In [14], the authors had a detailed discussion about different definitions of imitation, among which Mitchell’s definition is
considered to be the most applicable one across animals and machines [55], in which imitation is considered to be a proce-
dure to make a similar (but not exactly the same) copy of a model. In [85], imitation is described as a procedure of an imitator
copying part of a behavior from a demonstrator via observation.

In the following, we present a few new learning mechanisms inspired from social learning to replace the updating rules in
the canonical PSO.

2.2. Algorithm description

Without loss of generality, we consider the following minimization problem:
min f ¼ f ðXÞ;
s:t: X 2 X ;

ð3Þ
where X � Rn is the feasible solution set, n denotes the dimensionality of the search space, i.e., the number of decision vari-
ables, which are the behaviors to learn in the context of social learning.

2.2.1. The overall framework
Like the classical PSO, the proposed SL-PSO initializes a swarm PðtÞ containing m particles, where m is the swarm size and

t is the generation index. For each particle i in PðtÞ, it holds a randomly initialized decision vector (behavior vector) XiðtÞ,
which represents a candidate solution to the optimization problem described in (3). As a reward feedback from the environ-
ment, every particle will be assigned with a fitness value calculated from the objective function f ðXÞ. The swarm is then
sorted according to an increasing order of the particles’ fitness values. Consequently, each particle (except for the one with
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the best fitness value) will correct its behaviors by learning from those particles (demonstrators) which have better fitness
values. The general framework illustrating the above procedure is shown in Fig. 1.

2.2.2. Swarm sorting and behavior learning
It can be seen from Fig. 1 that, apart from fitness evaluations, the most important components in SL-PSO are swarm sorting

and behavior learning. For an easy description of the behavior learning mechanisms, the swarm is first sorted according to the
particles’ fitness values. Then, each particle i (an imitator), except for the best one, will learn from its corresponding demon-
strators. Note that in each generation, a particle could serve as an demonstrator for different imitators more than once. In a
sorted swarm, for any imitator (particle i, where 1 6 i < m), its demonstrators can be any particle k that satisfies i < k 6 m,
refer to Fig. 2. For example, for particle 1, particles 2, 3, . . ., m can be its demonstrators, while for particle (m-1), only particle
m can be its demonstrator. As a result, particle 1 (the worst one) can never be a demonstrator and particle m (the best one)
will never be an imitator. That is, the best particle in the current swarm will not be updated.

Inspired by social learning mechanism, an imitator will learn the behaviors of different demonstrators [13] in the follow-
ing manner:
Fig. 2.
one) le
Xi;jðt þ 1Þ ¼ Xi;jðtÞ þ DXi;jðt þ 1Þ; if piðtÞ 6 PL
i ;

Xi;jðtÞ; otherwise;

(
ð4Þ
where Xi;jðtÞ is the j-th dimension of particle i’s behavior vector in generation t, with i 2 f1;2;3; . . . ;mg and
j 2 f1;2;3; . . . ;ng;DXi;jðt þ 1Þ is the behavior correction. Taking into account the fact that in a society, the motivation to learn
Fig. 1. Main components of the proposed SL-PSO.

tseBtsroW

Swarm before sorting

Swarm after sorting

Sort according to fitness values 

Demonstrators

Swarm sorting and behavior learning in SL-PSO. At first, the swarm is sorted according to the fitness values; then each particle (except for the best
arns from its demonstrators which have better fitness values.
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from better individuals may vary from individual to individual (typically, better individuals are less willing to learn from
others), we define a learning probability PL

i for each particle i. The precise definition of the learning probability will be dis-
cussed later on. As a result, particle i will learn (correct its behavior vector) only if a randomly generated probability pi sat-
isfies 0 6 piðtÞ 6 PL

i 6 1. In detail, DXi;jðt þ 1Þ is generated as follows:
DXi;jðt þ 1Þ ¼ r1ðtÞ � DXi;jðtÞ þ r2ðtÞ � Ii;jðtÞ þ r3ðtÞ � � � Ci;jðtÞ; ð5Þ
with
Ii;jðtÞ ¼ Xk;jðtÞ � Xi;jðtÞ;
Ci;jðtÞ ¼ XjðtÞ � Xi;jðtÞ:

(
ð6Þ
In the above updating mechanisms inspired from social learning, the behavior correction DXi;jðt þ 1Þ consists of three
components. The first component DXi;jðtÞ is the same as the inertia component in the canonical PSO, while the other two com-
ponents are different. In the second component, instead of learning from pbest as done in the canonical PSO, particle i learns
from any of its demonstrators. Specifically, the j-th element in the behavior vector of particle i;Xi;jðtÞ imitates Xk;jðtÞ, which is
the j-th element in the behavior vector of particle k (demonstrator of particle i). Note that i < k 6 m, and k is generated inde-
pendently for each element j, refer to Fig. 2. Consequently, particle i may learn from different demonstrators in the current
swarm. Since this component is inspired from the imitation behavior in natural social learning, it is denoted as imitation com-
ponent. Likewise, particle i does not learn from gbest either; instead, it learns from the collective behavior of the whole

swarm, i.e., the mean behavior of all particles in the current swarm, denoted by XjðtÞ, where XjðtÞ ¼
Pm

i¼1
Xj

i
m . Since this com-

ponent induces a swarm-level conformity [93], it is denoted as the social influence component, and correspondingly, the con-
trol parameter � is denoted as the social influence factor. For simplicity, the three control parameters in classical PSO (x; c1

and c2) have been replaced with three random coefficients r1ðtÞ; r2ðtÞ and r3ðtÞ, which will be randomly generated within
½0;1� once the updating strategy is performed.

2.3. Dimension-dependent parameter control

In the proposed SL-PSO, there are three parameters that need to be defined, i.e., the swarm size m, the learning probability
PL

i , and the social influence factor �. As discussed in Section 1, the robustness of a PSO algorithm can be enhanced by adopting
adaptive parameter control, such that it could be applied to different problems without laborious parameter fine-tunings. It
has been found that the performance of most PSO variants is more sensitive to the search dimensionality of the optimization
problem than other widely used evolutionary algorithms [82], we suggest a dimension-dependent parameter control strat-
egy for the proposed SL-PSO as a guideline. It should be pointed out that this parameter control strategy has been suggested
based on pilot empirical studies, nevertheless, its effectiveness has been verified on 47 test functions, refer to Section 3.

The first parameter to be determined is the swarm size m. We recommend that the swarm size m be determined as a
function of the search dimensionality in the following form:
m ¼ M þ n
10

j k
; ð7Þ
where M is the base swarm size for the SL-PSO to work properly. It has been empirically shown that a small swarm size is
usually sufficient for uni-modal optimization problems while a bigger swarm size is required for multi-modal optimization
problems for more intensive exploration [25,1]. As in real-world applications it is difficult to know in advance whether a
problem is uni-modal or multi-modal, we suggest M ¼ 100 in this work.

The idea for setting the learning probability PL
i is also inspired from natural social learning. As previously mentioned,

within a swarm, the better the fitness a particle has, the less likely the particle will learn from others. Meanwhile, the more
complex the behavior is, the less likely a particle tends to successfully learn the behavior. Generally speaking, the perfor-
mance of most meta-heuristic algorithms degrades as the search dimensionality of the optimization problem increases, in
particular when there exist strong correlations between the decision variables. Thus, we assume that the higher the search
dimensionality is, the more difficult it is to solve the problem, and therefore, the less likely a particle is willing to learn from
others. Based on such an assumption, we recommend a inversely proportional relationship between the learning probability
and the problem dimensionality.

Based on the discussions above, the following learning probability has been adopted:
PL
i ¼ 1� i� 1

m

� �a�logðdn
MeÞ

; ð8Þ
where the radix component 1� i�1
m

� �
indicates that the learning probability is inversely proportional to the particle index i in a

sorted swarm, meaning that the higher the fitness of a particle is, the lower the learning probability will be. Meanwhile, the
exponent component a � log dn

Me
� �

indicates that the learning probability is inversely proportional to the search dimensionality,
such that a better swarm diversity would be maintained for large-scale problems due to the reduced learning rate, and the
a � logð�Þ function is used to smoothen the influence of n

M. Empirically, we recommend the coefficient a < 1, and in this work,
a ¼ 0:5 has been used.



Fig. 3. The learning probability curves for different search dimensionality varying from n 6 100 to n ¼ 2000. Here, a fixed swarm size m ¼ 100 is used and
the swarm is already sorted according to behavior fitness values.
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In order to obtain a more intuitive understanding of the relationship between the learning probability PL
i , swarm size m

and search dimensionality n, a number of curves showing the relationship between the learning probability and the search
dimensionality varying from n 6 100 to n ¼ 2000 are plotted in Fig. 3. It can be seen that, when the dimensionality is not
large, e.g., n 6 100, the learning probability keeps constant at 1 for all particles. By contrast, when the dimensionality
becomes larger, the learning probability decreases as the fitness value increases (a higher index in the sorted swarm) or
as the dimensionality ðnÞ becomes higher. It could also be noticed that, under the influence of a � logð�Þ function, the prob-
ability curves decrease sharply at the very beginning whilst more gently with the increase of n.

The last parameter that remains to be specified is the social influence factor �. Typically, the difficulty in convergence is
proportional to the search dimensionality, because the convergence of a whole swarm requires the convergence of each
dimension in each particle’s behavior vector. Based on this observation, the social influence factor � is specified as follows:
Fig. 4.
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� ¼ b� n
M
; ð9Þ
which means that � is proportional to the problem dimension. Since � controls the influence of the swarm-level mean behav-
ior, premature convergence to the mean behavior (rather than the best behavior) could occur if the value of this parameter is
set too big. Therefore, a small value of b ¼ 0:01 is used in this work.

In summary, the swarm size m, the learning probability PL
i , and the social influence factor � are set up based on the search

dimensionality with an aim to achieve a good balance between convergence and diversity. Typical values for M;a and b are
recommended and our results show that the proposed SL-PSO is able to perform robustly on problems of various search
dimensionality scales without additional fine tuning of the parameters.

Algorithm 1. The pseudocode of the proposed SL-PSO. t is the generation number. Unless otherwise specified, the
termination condition is the maximum number of fitness evaluations.
1:
 /*initialization*/

2:
 t ¼ 0;

3:
 M ¼ 100;a ¼ 0:5; b ¼ 0:01;

4:
 m ¼ M þ b n

10c; // refer to (7)

5:
 � ¼ b� n

M; // refer to (22)

6:
 for i ¼ 1 to m do

7:
 randomly initialize behavior Xi in Pð0Þ;

8:
 PL

i ¼ 1� i�1
m

� �a�logðdn
MeÞ; // refer to (5)
9:
 end for

10:
 /*main loop, refer to Fig. 1*/

11:
 while termination condition is not satisfied do

12:
 /*fitness evaluation*/

13:
 for i ¼ 1 to m do

14:
 Fi ¼ fðXiðtÞÞ; //f ðXÞ is the objective function

15:
 end for

16:
 update best solution X�;

17:
 /*behavior learning, refer to Fig. 2*/

18:
 sort PðtÞ according to behavior fitness values in F;

19:
 for i ¼ 1 to m� 1 do

20:
 /*correct behavior XiðtÞ according to (4)–(6)*/

21:
 piðtÞ ¼ randrð0;1Þ; //randrða; bÞ randomly generates an real value between a and b

22:
 if piðtÞ 6 PL

i then

23:
 for j ¼ 1 to n do

24:
 k ¼ randiðiþ 1;mÞ; //randiðA; BÞ randomly generates an integer between A and B

25:
 DXi;jðt þ 1Þ ¼ DXi;jðtÞ þ Ii;jðtÞ þ �� Ci;jðtÞ;

26:
 Xi;jðt þ 1Þ ¼ Xi;jðtÞ þ DXi;jðt þ 1Þ;

27:
 end for

28:
 end if

29:
 end for

30:
 t ¼ t þ 1;

31:
 end while

32:
 output X� as the final solution.
2.4. Computational complexity
Analysis of the computational complexity of the proposed SL-PSO is fairly straightforward thanks to its simplicity. As
shown in Fig. 1 and Algorithm 1, the computational complexity of SL-PSO depends on three parts: fitness evaluations, swarm
sorting and behavior learning. In real-world applications, the time cost of fitness evaluations is problem-dependent [38,50],
which is beyond the scope of this work. Therefore, the analysis of time complexity below focuses on swarm sorting and
behavior learning.

Since the swarm sorting in SL-PSO is a typical sequence sorting procedure, the worst computational complexity to sort
the swarm consisting of m-particles is:
Ts ¼ Oðm2Þ; ð10Þ
which can be attained by various sorting algorithms such as quick sort [31]. According to (7), m is a constant for a search
dimensionality n 6 100 and gradually increases with the search dimensionality n when n > 100. For instance, for n ¼ 500,
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according to (7), m ¼ M þ 50. Therefore, the time consumption for swarm sorting will not increase dramatically as the search
dimensionality n increases. Instead, it can be seen as a constant determined by the basic population size M.

Behavior learning is an essential and common process for updating particle behaviors, which is also similar to other learn-
ing mechanisms in various swarm intelligence algorithms [18,40,43,59]. The time complexity of behavior learning is indis-
pensable in a population-based stochastic search algorithm. Given an m-particle swarm and an n-dimensional optimization
problem, the time complexity can be obtained as follows:
Tc ¼ OðmnÞ: ð11Þ
Further to the above analysis, some empirical results on the influence of the search dimensionality n on the time
complexity for swarm sorting and behavior learning, Ts; Tc , respectively, are presented in Fig. 4. In Section 4, comparative
experimental results on computational time will confirm the low time complexity of SL-PSO compared to other PSO variants.

2.5. Convergence proof

Similar to most theoretical convergence analysis of PSO [12,79,21], a deterministic implementation of the proposed SL-
PSO is considered to theoretically analyze its convergence property. It should also be pointed out that the proof does not
guarantee a convergence to the global optimum.

Without loss of generality, the convergence of the whole swarm can be more specifically regarded as the convergence of
every dimension in any particle behavior vector. In other words, the convergence can be satisfied if and only if there is no
more change in any dimension of the behavior vector of all particles. Theoretically, there should exist an equilibrium to
induce such convergence [68]. To start with, we consider the update of the j-th ð1 6 j 6 nÞ dimension in the behavior vector
of particle ið1 6 i 6 mÞ;Xi;jðtÞ. Once its learning probability satisfies piðtÞ 6 PL

i ;Xi;jðtÞ will be corrected as follows:
Xi;jðt þ 1Þ ¼ Xi;jðtÞ þ DXi;jðt þ 1Þ: ð12Þ
If we substitute (6) into (5) and replace all random parameters with their expected value, the following expression can be
obtained:
DXi;jðt þ 1Þ ¼ 1
2

DXi;jðtÞ þ
1
2
ðXk;jðtÞ � Xi;jðtÞÞ þ

1
2
�� ðXjðtÞ � Xi;jðtÞÞ; ð13Þ
where 1
2 is the expected value of r1; r2 and r3.

In this way, the convergence proof of the proposed SL-PSO can be reduced to a convergence proof of the dynamic system
described by (12) and (13).

Theorem 1. The dynamic system described by (12) and (13) converges to an equilibrium.
Proof. Let
h ¼ 1þ �
2

;

p ¼ 1
1þ �Xk;jðtÞ þ

�
1þ �Xi;jðtÞ;

ð14Þ
then (12) and (13) can be rewritten together into:
DXi;jðt þ 1Þ ¼ 1
2

DXi;jðtÞ þ hðp� Xi;jðtÞÞ;

Xi;jðt þ 1Þ ¼ Xi;jðtÞ þ DXi;jðt þ 1Þ:
ð15Þ
The search dynamics described in (15) can be seen as a dynamical system, and the convergence analysis of the system can
be conducted by using the well established theories on stability analysis in dynamical systems. To this end, we rewrite sys-
tem (15) into the following form:
yðt þ 1Þ ¼ AyðtÞ þ Bp; ð16Þ
where
yðtÞ ¼
DXi;jðtÞ
Xi;jðtÞ

� �
; A ¼

1
2 �h
1
2 1� h

" #
; B ¼

h

h

� �
; ð17Þ
where A is called state matrix in dynamical system theory, p is called external input that drives the particle behavior vector to
a specific status and B is called input matrix that controls external effect on the dynamics of the particle behavior.

If there exists an equilibrium y� that satisfies y�ðt þ 1Þ ¼ y�ðtÞ for any t, it can be calculated from (16) and (17):
y� ¼ 0 p½ �; ð18Þ
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which means that all behavior vectors of particles will finally stabilize at the same position, provided that u is constant, i.e.,
an optimum (local or global) has been found, so that no more correction for u will happen.

Convergence means that the behavior will eventually settle down at the equilibrium point y�. From the dynamical system
theory point of view, we can know that the convergence property depends on the eigenvalues of the state matrix A:
k2 � 3
2
� h

� �
kþ 1

2
¼ 0; ð19Þ
where the eigenvalues are:
k1 ¼ 3
4� h

2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2�hð Þ2�2

q
2 ;

k2 ¼ 3
4� h

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2�hð Þ2�2

q
2 :

8>>><
>>>:

ð20Þ
The necessary and sufficient condition for the convergence, i.e., the equilibrium point is a stable attractor, is that jk1j < 1
and jk2j < 1, leading to the result:
h > 0; ð21Þ
where if h is substituted by � using (14), the condition for convergence on � is:
� > �1: ð22Þ
Further, if � is substituted by n using (9), the condition becomes:
n > �M
b
: ð23Þ
Therefore, since n > 0 > �M
b is always satisfied, the convergence condition of the system can be guaranteed. h
3. Experimental studies

The proposed SL-PSO has been tested on 47 functions, including 12 widely used basic test functions [91,4,97,96,8] (f 1 to
f 12, refer to Table 1), 28 functions taken from the whole test suite for CEC’13 special session on real-parameter optimization
(f 13 to f 40, refer to [47]), and 7 functions taken from the whole test suite for CEC’08 special session on large scale global opti-
mization (f 41 to f 47, refer to [78]), where f 13 to f 47 are all shifted or rotated functions.

In order to verify the scalability of the proposed SL-PSO, test functions of different dimensions have been used in the
experiments. Firstly, the proposed SL-PSO is tested on twelve 30-D functions (f 1 to f 12) and 28 50-D functions (f 13 to f 40)
in comparison with five widely reported PSO variants proposed for low-dimensional optimization. Afterwards, SL-PSO is fur-
ther tested on ðf 41 to f 47 by setting the search dimensionality to 100-D, 500-D and 1000-D, respectively. For comparison, five
representative meta-heuristic algorithms specifically designed for large-scale optimization problems have been tested.

All experimental results are obtained from 30 independent runs. The experiments have been conducted on a PC with an
Intel Core i3-2328 2.2 GHz CPU and Microsoft Windows 7 Enterprize SP1 64-bit operating system. In the experiments on
low-dimensional test problems, the proposed SL-PSO and the compared PSO variants are implemented in Matlab 2010a.
For the experiments on high-dimensional (large-scale) optimization problems, SL-PSO is implemented in C with Microsoft
Visual Studio 2010 Enterprize for better computational efficiency.

It should also be noted that, thanks to the dimension-dependent parameter control strategy introduced in Section 2.3, no
additional parameter settings for SL-PSO are needed. The termination condition, which is also the baseline for comparison, is
the maximum number of fitness evaluations (FEs).

3.1. Performance on low-dimensional test problems

In the experiments on low-dimensional optimization problems, five representative PSO variants have been chosen to
compare with the proposed SL-PSO, including the global version PSO (GPSO) [73], the local version PSO (LPSO) [44], the fully
informed PSO (FIPS) [53], the dynamic multi-swarm PSO (DMS-PSO) [48] and the comprehensive learning PSO (CLPSO) [49].
The parameter settings for these PSO variants are summarized in Table 2.

Firstly, the proposed SL-PSO and the five PSO variants are tested on the 12 basic functions (f 1 to f 12), among which f 1 to f 5

are uni-modal functions, f 6 is a step function whose minimum is non-continuous, and f 7 to f 12 are multi-modal functions.
The dimension of these functions is set to 30 and the termination condition of each algorithm is met when a maximum num-
ber of 2� 105 fitness evaluations is exhausted.

The results yielded by the proposed SL-PSO and the PSO variants on f 1 to f 12 are summarized in Table 3. In each row of the
table, the mean values averaged over 30 independent runs are listed in the first line, and the standard deviations are listed
in the second line. Two-tailed t-test is performed with a significance level a ¼ 0:05. In the table, if SL-PSO statistically



Table 1
Low-dimensional test functions used in the experiments.

Name Function Search range

Sphere f 1ðXÞ ¼
Pn

i¼1x2
i ½�100;100�n

Schwefel 2.22 f 2ðXÞ ¼
Pn

i¼1jxij þ
Qn

i¼1xi ½�10;10�n

Schwefel 1.2 f 3ðXÞ ¼
Pn

i¼1ð
Pi

j¼1xjÞ
2 ½�100;100�n

Schwefel 2.21 f 4ðXÞ ¼max jxi; i 6 i 6 nj ½�100;100�n

Rosenbrock f 5ðXÞ ¼
Pn�1

i¼1 ð100ðx2
i � xiþ1Þ

2 þ ðxi � 1Þ2Þ ½�30;30�n

Step f 6ðXÞ ¼
Pn

i¼1bxi þ 0:5c2 ½�100;100�n

Schwefel f 7ðXÞ ¼ 418:9829 � nþ
Pn

i¼1 � xi � sinð
ffiffiffiffiffiffiffi
jxij

p
Þ ½�500;500�n

Rastrigin f 8ðXÞ ¼
Pn

i¼1ðx2
i � 10 cosð2pxiÞ þ 10Þ ½�5:12;5:12�n

Ackley f 9ðXÞ ¼ �20 expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x2

i

q
Þ � exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e ½�32;32�n

Griewank f 10ðXÞ ¼
Pn

i¼1
x2

i
4000�

Qn
i¼1 cos xiffi

i
p
	 


þ 1 ½�600;600�n

Penalized 1

f 11ðXÞ ¼ p
n 10 sin2ðpy1Þ þ

Xn�1

i¼1

ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ� þ ðyn � 1Þ2
( )

þ
Xn

i¼1

uðxi;10;100;4Þ;

y ¼ 1þ 1
4 ðxi þ 1Þ

½�50;50�n

Penalized 2 f 12ðXÞ ¼ 0:1 sin2ð3px1Þ þ
Xn�1

i¼1

ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�
( )

þ
Xn

i¼1

uðxi;5;100;4Þ

½�50;50�n

In f 11 and f 12;uðxj;a;k;mÞ¼
kðxj�aÞm; xj > a
0; �a6 xj 6 a
kð�xj�aÞm; xj <�a

8<
: .

All functions are scalable to the search dimensionality denoted by n.
The global optimum is 0 for all functions.

Table 2
Parameter settings for the compared PSO variants.

Algorithm Parameter settings

GPSO x ¼ 0:90:4; c1 ¼ c2 ¼ 2:0
LPSO x ¼ 0:90:4; c1 ¼ c2 ¼ 2:0
FIPS v ¼ 0:729;

P
ci ¼ 4:1

DMS-PSO x ¼ 0:729; c1 ¼ c2 ¼ 1:49445;m ¼ 3;R ¼ 15
CLPSO x ¼ 0:90:7; c1 ¼ c2 ¼ 1:49445
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significantly outperforms another algorithm, a bold ‘+’ is labeled in front of the corresponding result obtained by this algo-
rithm; if there is no significance between SL-PSO and the compared algorithm, a ‘=’ is labeled and if SL-PSO is outperformed, a
‘�’ is labeled. At the bottom of each table that contains the statistical results, a summary of total number of ‘+’, ‘=’ and ‘�’ is
listed. In addition, the best results obtained for each function are highlighted in bold. Note that all results are optimization
errors, i.e., the difference between the finally obtained fitness values and the global optimum values. The same presentation
format is used in all tables listing the comparative results.

In general, SL-PSO has shown the best performance on 9 out of 12 functions (f 1 to f 4; f 6 and f 9 to f 12), including four
uni-modal functions and five multi-modal functions. Although DMS-PSO and CLPSO have both shown outstanding perfor-
mance on f 7 and f 8, SL-PSO has outperformed them on almost all the rest functions, which indicates that SL-PSO has better
overall performance on this test suite. On the one hand, SL-PSO has maintained the merit of fast convergence feature of PSO,
which can be confirmed by its performance on the uni-modal functions like f 1; on the other hand, its performance on multi-
modal functions has been enhanced, which can be demonstrated by its performance on f 9 to f 12. In order to further justify
the above conclusion, the convergence profiles of one typical uni-modal function ðf 1Þ and one typical multi-modal function
ðf 11Þ are potted in Fig. 5. It can be seen that, the convergence speed of SL-PSO ranks first on both functions. On the contrary,
the convergence speed of DMS-PSO and CLPSO are slower, even in comparison with the GPSO and LPSO, which are two basic
PSO variants. In other words, the high performance of DMS-PSO and CLPSO on some multi-modal problems (e.g. f 7 and f 8)



Table 3
Optimization errors on 12 basic test functions.

30-D SL-PSO GPSO LPSO FIPS DMS-PSO CLPSO

f 1 4.24E�90 + 1.25E�61 ¼ 8.48E�35 + 6.20E�70 ¼ 3.30E�14 + 4.76E�19
5.26E�90 2.82E�61 2.85E�34 1.44E�69 1.27E�13 1.92E�19

f 2 1.50E�46 + 7.33E+00 ¼ 6.67E�01 + 1.13E�38 + 8.48E�11 + 7.54E�12
5.34E�47 1.39E+01 2.58E+00 5.70E�39 1.84E�10 2.50E�12

f 3 4.66E�07 + 4.22E+03 + 3.65E�01 + 1.21E+00 + 9.79E+01 + 1.13E+03
2.48E�07 5.08E+03 3.83E�01 6.59E�01 7.31E+01 2.89E+02

f 4 1.17E�24 + 8.49E�07 + 4.42E�05 + 2.37E+00 + 1.90E+00 + 4.31E+00
8.37E�25 1.01E�06 2.32E�05 1.17E+00 7.85E�01 6.84E�01

f 5 2.15E+01 + 6.05E+03 + 5.18E+01 + 3.53E+01 + 5.60E+01 � 9.28E+00
3.41E+00 2.32E+04 3.68E+01 2.71E+01 3.28E+01 1.03E+01

f 6 0.00E+00 ¼ 0.00E+00 ¼ 0.00E+00 ¼ 0.00E+00 + 5.33E�01 ¼ 0.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 9.15E�01 0.00E+00

f 7 1.50E+03 + 5.62E+03 + 3.07E+03 + 2.98E+03 � 5.74E�08 � 6.06E�13
9.10E+01 2.19E+03 7.80E+02 7.87E+02 6.02E�10 8.88E�13

f 8 1.55E+01 + 4.65E+01 + 5.02E+01 + 3.86E+01 � 2.70E�13 � 5.83E�09
3.19E+00 2.55E+01 2.25E+01 1.04E+01 8.41E�13 5.02E�09

f 9 5.51E�15 + 1.36E�14 + 7.67E+00 + 6.69E�15 + 6.11E�09 + 2.99E�10
1.59E�15 4.34E�15 9.79E+00 1.83E�15 1.89E�08 9.47E�11

f 10 0.00E+00 + 1.21E�02 + 2.46E�03 + 2.07E�13 + 1.76E�02 + 8.40E�12
0.00E+00 1.58E�02 6.64E�03 5.03E�13 2.56E�02 1.45E�11

f 11 1.57E�32 ¼ 6.91E�03 ¼ 1.57E�32 ¼ 1.57E�32 ¼ 9.32E�15 + 3.61E�20
0.00E+00 2.68E�02 2.83E�48 2.83E�48 3.61E�14 1.87E�20

f 12 1.35E�32 ¼ 7.32E�04 ¼ 7.32E�04 ¼ 1.35E�32 ¼ 1.47E�03 + 3.31E�19
0.00E+00 2.84E�03 2.84E�03 2.83E�48 3.87E�03 8.67E�20

þ= ¼ =� 8/4/0 6/6/0 9/3/0 7/3/2 8/1/3

Fig. 5. The convergence profiles.
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might have been achieved by sacrificing the fast convergence feature of PSO. In addition, although GPSO, LPSO and FIPS have
shown fast convergence on f 1, they suffer premature convergence on multi-modal functions like f 11.

In order to further verify the robustness of the proposed SL-PSO, the whole function suite (denoted from f 13 to f 40) pro-
posed in the CEC’13 special session [47] has been taken for comparative studies in this work. The test suite consists of five
uni-modal functions (f 13 to f 17), 15 multi-modal functions (f 18 to f 32) and eight composition functions (f 33 to f 40). All the
functions are shifted or rotated to increase their complexity. In this group of tests, the dimension of the functions is set
to 50 and the termination condition of each algorithm is a maximum number of 2:5� 105 fitness evaluations.



Table 4
Optimization errors on CEC’13 functions.

50-D SL-PSO GPSO LPSO FIPS DMS-PSO CLPSO

f 13 2.05E�13 + 5.29E+03 + 2.34E+02 + 4.55E�13 + 8.27E�06 + 5.91E�13
7.19E�14 5.37E+03 3.20E+02 0.00E+00 1.12E�05 1.25E�13

f 14 2.22E+06 + 8.34E+07 + 5.12E+07 + 2.71E+07 + 1.11E+07 + 6.55E+07
5.90E+05 9.54E+07 5.60E+07 5.01E+06 5.91E+06 9.86E+06

f 15 1.31E+07 + 9.81E+10 + 4.96E+08 + 6.61E+08 + 3.58E+08 + 5.92E+09
2.13E+07 5.91E+10 2.03E+08 2.82E+08 1.74E+08 1.69E+09

f 16 3.82E+04 � 1.58E+04 � 2.44E+04 + 4.26E+04 � 3.21E+04 + 6.47E+04
3.11E+03 1.39E+04 4.82E+03 7.63E+03 2.26E+03 1.06E+04

f 17 1.82E�13 + 1.59E+03 + 4.88E+02 + 5.68E�13 + 5.32E�04 + 5.26E�09
6.23E�14 9.92E+02 3.52E+02 8.14E�14 5.69E�04 2.03E�09

f 18 4.52E+01 + 4.88E+02 + 1.14E+02 ¼ 4.55E+01 + 4.74E+01 + 4.79E+01
2.33E+00 6.51E+02 9.30E+01 1.13E+00 7.84E�01 4.30E�01

f 19 7.49E+00 + 1.63E+02 + 1.83E+02 + 9.38E+01 + 5.63E+01 + 1.14E+02
1.51E+00 4.06E+01 3.41E+01 6.94E+00 7.67E+00 1.06E+01

f 20 2.12E+01 ¼ 2.12E+01 � 2.11E+01 ¼ 2.12E+01 ¼ 2.12E+01 ¼ 2.12E+01
3.44E�02 9.10E�03 4.59E�02 2.51E�02 2.86E�02 5.49E�02

f 21 1.82E+01 + 4.43E+01 + 5.03E+01 + 5.93E+01 + 4.72E+01 + 5.71E+01
1.75E+00 2.67E+00 4.91E+00 2.20E+00 3.48E+00 2.62E+00

f 22 2.41E�01 + 1.45E+03 + 3.43E+02 + 2.97E�01 + 6.99E+00 + 2.95E+01
1.06E�01 1.29E+03 2.52E+02 7.31E�02 3.59E+00 8.24E+00

f 23 2.65E+01 + 1.56E+02 + 1.24E+02 + 1.32E+02 � 5.92E+00 � 7.97E�05
5.87E+00 8.03E+01 5.87E+01 1.91E+01 3.87E+00 6.60E�05

f 24 3.39E+02 ¼ 3.73E+02 � 1.89E+02 + 4.09E+02 � 1.26E+02 ¼ 3.31E+02
2.11E+01 1.89E+02 5.03E+01 1.02E+01 6.61E+01 3.14E+01

f 25 3.43E+02 + 5.87E+02 ¼ 3.25E+02 + 4.18E+02 � 2.36E+02 + 4.07E+02
2.45E+01 1.49E+02 5.66E+01 1.89E+01 3.66E+01 3.49E+01

f 26 1.08E+03 + 2.59E+03 + 6.53E+03 + 1.07E+04 � 1.87E+01 � 1.44E+02
3.95E+02 1.03E+03 1.89E+03 7.91E+02 1.06E+01 2.65E+01

f 27 1.23E+04 � 7.76E+03 � 8.11E+03 + 1.41E+04 � 9.22E+03 � 1.04E+04
3.16E+03 5.53E+02 1.02E+03 3.95E+02 2.75E+03 8.86E+02

f 28 3.33E+00 � 2.09E+00 � 2.52E+00 ¼ 3.50E+00 � 2.01E+00 � 2.82E+00
3.27E�01 3.48E�01 3.98E�01 3.54E�01 8.40E�01 6.00E�01

f 29 3.70E+02 ¼ 3.46E+02 � 1.18E+02 � 3.56E+02 � 6.47E+01 � 6.28E+01
1.41E+01 1.94E+02 2.21E+01 3.25E+01 3.58E+00 1.42E+00

f 30 3.97E+02 � 3.45E+02 � 2.57E+02 + 4.44E+02 � 2.08E+02 + 4.52E+02
9.63E+00 7.95E+01 7.24E+01 1.59E+01 9.37E+01 1.86E+01

f 31 9.18E+00 + 4.36E+04 + 6.44E+01 + 2.94E+01 � 4.15E+00 � 3.92E+00
5.24E+00 5.87E+04 8.74E+01 1.72E+00 1.12E+00 6.39E�01

f 32 2.24E+01 ¼ 2.22E+01 � 2.12E+01 � 2.17E+01 + 2.35E+01 + 2.38E+01
3.47E�01 1.06E+00 5.65E�01 4.98E�01 1.01E+00 5.50E�01

f 33 7.60E+02 ¼ 9.33E+02 + 1.19E+03 � 3.62E+02 ¼ 7.88E+02 � 4.91E+02
4.06E+02 1.27E+03 1.83E+02 2.73E+02 4.22E+02 2.19E+02

f 34 1.14E+03 + 4.25E+03 + 6.79E+03 + 1.05E+04 � 5.54E+01 � 6.07E+02
3.05E+02 5.37E+02 7.83E+02 1.04E+03 4.76E+01 1.45E+02

f 35 1.10E+04 ¼ 1.06E+04 ¼ 9.56E+03 + 1.46E+04 � 7.95E+03 ¼ 1.15E+04
4.27E+03 1.34E+03 1.94E+03 2.37E+02 1.06E+03 8.47E+02

f 36 2.46E+02 + 3.37E+02 + 3.62E+02 + 3.37E+02 + 2.71E+02 + 3.55E+02
8.35E+00 2.57E+01 4.02E+00 9.04E+00 1.50E+01 3.28E+00

f 37 2.94E+02 + 4.81E+02 + 3.80E+02 + 3.73E+02 + 3.29E+02 + 3.94E+02
8.23E+00 1.00E+01 8.25E+00 1.57E+01 1.18E+01 8.18E+00

f 38 3.35E+02 + 4.17E+02 + 4.45E+02 � 2.50E+02 + 3.88E+02 � 2.07E+02
7.91E+00 1.74E+01 4.01E+00 1.07E+02 2.62E+01 1.30E+00

f 39 7.29E+02 + 1.68E+03 + 1.81E+03 + 1.74E+03 + 1.19E+03 + 1.87E+03
8.12E+01 9.36E+01 4.35E+01 1.30E+02 8.34E+01 6.00E+01

f 40 4.00E+02 + 4.33E+03 + 3.17E+03 + 4.00E+02 + 1.68E+03 + 4.00E+02
2.05E�13 9.57E+02 1.59E+03 6.00E�03 1.75E+03 1.22E�02

þ= ¼ =� 18/6/4 18/2/8 21/3/4 14/2/12 16/3/9
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Table 5
The details of functions on which DMS-PSO and CLPSO have yielded best performance.

Function number Detail

f 23 Rastrigin’s Function
f 24 Rotated Rastrigin’s Function
f 25 Non-Continuous Rotated Rastrigin’s Function
f 26 Schwefel’s Function
f 27 Rotated Schwefel’s Function
f 28 Rotated Katsuura Function
f 29 Lunacek Bi_Rastrigin Function
f 30 Rotated Lunacek Bi_Rastrigin Function
f 31 Expanded Griewank’s plus Rosenbrock’s Function
f 34 Composition Function of Schwefel’s Function ðf 26Þ
f 35 Composition Function of Rotated Schwefel’s Function ðf 27Þ
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As the results shown in Table 4, the proposed SL-PSO still shows the best overall performance compared with the five PSO
variants. Among the 28 functions, SL-PSO has yielded the best results on 12 of them (f 13 to f 15; f 17 to f 19; f 21; f 22; f 36; f 37; f 39

and f 40). In comparison, GPSO and LPSO performs best on f 16; f 27 and f 20; f 32, respectively; FIPS performs best on f 33; DMS-
PSO performs best on seven functions (f 24 to f 26; f 28; f 30; f 34 and f 35); and CLPSO performs best on f 24; f 29 and f 31. It can be
seen that DMS-PSO and CLPSO still have shown the most competitive performance in comparison with the rest three PSO
variants, because they have yielded most of the best results from f 23 to f 35. For a clearer observation on those functions
where DMS-PSO and CLPSO perform best, Table 5 has listed the function details. In can be seen that among the 11 functions,
nine of them are the variants of Schwefel’s function ðf 7Þ and Rastrigin’s function ðf 8Þ, which are precisely the two test func-
tions on which DMS-PSO and CLPSO have shown best performance in the previous set of experiments on the 12 basic func-
tions, refer to Tables 1 and 3. It seems that DMS-PSO and CLPSO can perform particularly well on these two functions, on
which SL-PSO performs relatively poorly. However, except for the variants of these two functions, SL-PSO shows significantly
better overall performance on the rest of the test functions. More importantly, the more competitive performance of SL-PSO
has been achieved without sacrificing the computational efficiency of the classical PSO. This is clearly supported by the aver-
aged computational times of the six compared algorithms summarized in Fig. 6. From the figure, we can see that SL-PSO
needs the lowest computational time among the six PSO variants, even lower than the GPSO and LPSO, which are two basic
PSO variants. These results confirm the time complexity analysis in Section 2.4.

3.2. Performance on optimization of high-dimensional problems

In the optimization of low-dimensional (30-D and 50-D) problems, SL-PSO has shown robust performance on 40 bench-
mark functions in comparison with five representative PSO variants, in addition to its high computational efficiency.
However, we are keen to further investigate its performance on large-scale (high-dimensional) optimization problems,
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Table 6
Optimization errors on CEC’08 functions.

SL-PSO CCPSO2 MLCC sep-CMA-ES DMS-L-PSO EPUS-PSO

100-D
f 41 1.09E�27 + 7.73E�14 + 6.82E�14 + 9.02E�15 � 0.00E+00 + 7.47E�01

3.50E�28 3.23E�14 2.32E�14 5.53E�15 0.00E+00 1.70E�01

f 42 9.45E�06 + 6.08E+00 + 2.53E+01 + 2.31E+01 + 3.65E+00 + 1.86E+01
4.97E�06 7.83E+00 8.73E+00 1.39E+01 7.30E�01 2.26E+00

f 43 5.74E+02 ¼ 4.23E+02 � 1.50E+02 � 4.31E+00 � 2.83E+02 + 4.99E+03
1.67E+02 8.65E+02 5.72E+01 1.26E+01 9.40E+02 5.35E+03

f 44 7.46E+01 � 3.98E�02 � 4.39E�13 + 2.78E+02 + 1.83E+02 + 4.71E+02
1.21E+01 1.99E�01 9.21E�14 3.43E+01 2.16E+01 5.94E+01

f 45 0.00E+00 + 3.45E�03 + 3.41E�14 ¼ 2.96E�04 ¼ 0.00E+00 + 3.72E�01
0.00E+00 4.88E�03 1.16E�14 1.48E�03 0.00E+00 5.60E�02

f 46 2.10E�14 + 1.44E�13 + 1.11E�13 + 2.12E+01 � 0.00E+00 + 2.06E+00
5.22E�15 3.06E�14 7.87E�15 4.02E�01 0.00E+00 4.40E�01

f 47 �1.48E+03 � �1.50E+03 � �1.54E+03 + �1.39E+03 + �1.14E+03 + �8.55E+02
1.90E+01 1.04E+01 2.52E+00 2.64E+01 8.48E+00 1.35E+01

500-D
f 41 7.24E�24 + 7.73E�14 + 4.30E�13 + 2.25E�14 � 0.00E+0 + 8.45E+01

2.05E�25 3.23E�14 3.31E�14 6.10E�15 0.00E+00 6.40E+00

f 42 3.47E+01 + 5.79E+01 + 6.67E+01 + 2.12E+02 + 6.89E+01 + 4.35E+01
1.03E+00 4.21E+01 5.70E+00 1.74E+01 2.01E+00 5.51E�01

f 43 6.10E+02 + 7.24E+02 + 9.25E+02 � 2.93E+02 + 4.67E+07 + 5.77E+04
1.87E+02 1.54E+02 1.73E+02 3.59E+01 5.87E+06 8.04E+03

f 44 2.72E+03 � 3.98E�02 � 1.79E�11 + 2.18E+03 + 1.61E+03 + 3.49E+03
3.25E+02 1.99E�01 6.31E�11 1.51E+02 1.04E+02 1.12E+02

f 45 3.33E�16 ¼ 1.18E�03 + 2.13E�13 ¼ 7.88E�04 � 0.00E+00 + 1.64E+00
0.00E+00 4.61E�03 2.48E�14 2.82E�03 0.00E+00 4.69E�02

f 46 1.46E�13 + 5.34E�13 + 5.34E�13 + 2.15E+01 + 2.00E+00 + 6.64E+00
2.95E�15 8.61E�14 7.01E�14 3.10E�01 9.66E�02 4.49E�01

f 47 �5.94E+03 � �7.23E+03 � �7.43E+03 � �6.37E+03 + �4.20E+03 + �3.51E+03
1.72E+02 4.16E+01 8.03E+00 7.59E+01 1.29E+01 2.10E+01

1000-D
f 41 7.10E�23 + 5.18E�13 + 8.46E�13 + 7.81E�15 � 0.00E+00 + 5.53E+02

1.40E�24 9.61E�14 5.01E�14 1.52E�15 0.00E+00 2.86E+01

f 42 8.87E+01 ¼ 7.82E+01 + 1.09E+02 + 3.65E+02 + 9.15E+01 � 4.66E+01
5.25E+00 4.25E+01 4.75E+00 9.02E+00 7.14E�01 4.00E�01

f 43 1.04E+03 + 1.33E+03 + 1.80E+03 ¼ 9.10E+02 + 8.98E+09 + 8.37E+05
5.14E+01 2.63E+02 1.58E+02 4.54E+01 4.39E+08 1.52E+05

f 44 5.89E+02 � 1.99E�01 � 1.37E�10 + 5.31E+03 + 3.84E+03 + 7.58E+03
9.26E+00 4.06E�01 3.37E�10 2.48E+02 1.71E+02 1.51E+02

f 45 4.44E�16 + 1.18E�03 + 4.18E�13 ¼ 3.94E�04 � 0.00E+00 + 5.89E+00
0.00E+00 3.27E�03 2.78E�14 1.97E�03 0.00E+00 3.91E�01

f 46 3.44E�13 + 1.02E�12 + 1.06E�12 + 2.15E+01 + 7.76E+00 + 1.89E+01
5.32E�15 1.68E�13 7.68E�14 3.19E�01 8.92E�02 2.49E+00

f 47 �1.30E+04 � �1.43E+04 � �1.47E+04 + �1.25E+04 + �7.50E+03 + �6.62E+03
1.04E+02 8.27E+01 1.51E+01 9.36E+01 1.63E+01 3.18E+01

þ= ¼ =� 12/3/6 14/0/7 14/3/4 13/1/7 20/0/1
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whose search dimensionality is normally larger than 100. For this purpose, SL-PSO is tested on a large-scale optimization test
set (denoted as f 41 to f 47), which was proposed in the CEC’08 special session on large-scale optimization [78]. The dimension
has been set to 100, 500, and 1000, respectively. Correspondingly, a maximum number of 5000 � n fitness evaluations is set
as the termination condition, where n is the search dimensionality of the test problem.

In order to properly evaluate the performance of the proposed SL-PSO for large-scale optimization, five algorithms spe-
cifically tailored for large-scale optimization have been chosen for comparisons, including CCPSO2 [46], sep-CMA-ES [66],
EPUS-PSO [32], and MLCC [90].

Among the five algorithms, CCPSO2 is the most recently proposed state-of-the-art for large-scale optimization, which
belongs to the cooperative coevolution (CC) framework [89] for large-scale optimization [46], where a random grouping



Table 7
Ranking results based on the Holm-Bonferroni procedure for the compared algorithms on test functions from f 1 to f 12.

Rank Algorithm z p h h Score

1 SL-PSO – – – – 5.58E+00
2 FIPS �2.07E+00 1.91E�02 5.00E�02 1 4.00E+00
3 CLPSO �2.73E+00 3.19E�03 2.50E�02 1 3.50E+00
4 LPSO �3.49E+00 2.40E�04 1.67E�02 1 2.92E+00
5 DMS-PSO �4.04E+00 2.71E�05 1.25E�02 1 2.50E+00
6 GPSO �4.04E+00 2.71E�05 1.00E�02 1 2.50E+00
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strategy is adopted based on the idea of divide-and-conquer [62]. Similarly, multi-level cooperative coevolution (MLCC) has
also been proposed belonging to the CC framework [90], where a self-adaptive neighborhood search differential evolution
variant (SaNSDE) is used instead of PSO as the core algorithm [88]. The sep-CMA-ES is an extension of the original CMA-
ES algorithm [26], which has been shown more efficient and fairly scalable to some high-dimensional test functions up to
1000-D [66]. EPUS-PSO is another PSO variant which adjusts the swarm size according to the search results [32], and
DMS-L-PSO is the DMS-PSO enhanced with a local search operator [98].

As shown from the experimental results summarized in Table 6, the proposed SL-PSO continues to exhibit the best overall
performance on the 100-D, 500-D and 1000-D functions. Among all the compared algorithms, CCPSO2, MLCC and
sep-CMA-ES have shown comparable performance as SL-PSO on the rest five test functions except for f 41 and f 45, whilst
significantly outperform the other two algorithms. However, the DMS-L-PSO is always able to find the real global optimum
of f 41 and f 45, regardless of the dimension, although it performs not so well on the other five test functions. The performance
of the proposed SL-PSO on large-scale optimization problems is surprisingly good, because there is no specific mechanism for
large-scale optimization such as the divide-and-conquer or the CC framework adopted in SL-PSO. We conjecture that the good
scalability of SL-PSO might be attributed to the following two reasons. First, the social learning mechanism allows the parti-
cles to interactively and dynamically learn from each other, thereby maintaining a proper level of swarm diversity needed for
handling large-scale problems. Second, the dimension dependent parameter control strategy might have contributed to the
scalability. A rigorous analysis of SL-PSO’s search performance on large-scale optimization remains to be investigated.

3.3. Holm-Bonferroni procedure based ranking of the compared algorithms

In this section, we further assess the performance of the compared algorithms by ranking them using the Holm-Bonfer-
roni procedure [23,17] based on the statistical results summarized in Tables 3, 4 and 6, respectively. Here we adopt the
procedure suggested in [58] for this purpose.

Given the statistical results obtained by Na optimizers on Np optimization problems, a score Si; i ¼ 1; . . . ;Na is assigned to
the i-the algorithm in the following way: the algorithm showing the best performance is assigned a score of Na, the second
best a score of Na � 1, and so on. This process continues until the worst-performed algorithm is assigned a score of 1. Based
on the mean score averaged over all the test problems, the algorithms are ranked. Take the proposed SL-PSO as a reference
algorithm and denote its score as S0, the z values of the remaining Na � 1 algorithms can be calculated as:
Table 8
Ranking

Rank

1
2
3
4
5
6

zj ¼
Sj � S0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NaðNaþ1Þ
6Np

q ; ð24Þ
where Sj; j ¼ 1; . . . ;Na � 1 denotes the score for the j-th algorithm and Np is the number of test problems. On the basis of
these zj values, the corresponding cumulative normal distribution values pj can be calculated, which are compared with
the thresholds hj calculated based on the level of confidence d (set to 0.05 in our case) as hj ¼ d=ðNa � jÞ. If pj < hj, it means
that the null-hypothesis that there is no significant difference between the performance of two algorithms is rejected,
denoted as h ¼ 1; otherwise, the null-hypothesis is accepted, meaning there is no significant difference between the perfor-
mance of the two algorithms, denoted as h ¼ 0.

From the ranking results based on the Holm-Bonferroni procedure shown in Tables 7 and 8, we can observe that the pro-
posed SL-PSO significantly outperforms the compared algorithms on all low-dimensional problems except that there is no
results based on the Holm-Bonferroni procedure for the compared algorithm on test functions from f 13 to f 40.

Algorithm z p h h Score

SL-PSO – – – – 4.50E+00
DMS-PSO �7.14E�02 4.72E�01 5.00E�02 0 4.46E+00
CLPSO �2.57E+00 5.06E�03 2.50E�02 1 3.21E+00
LPSO �2.71E+00 3.32E�03 1.67E�02 1 3.14E+00
FIPS �2.93E+00 1.70E�03 1.25E�02 1 3.04E+00
GPSO �3.71E+00 1.02E�04 1.00E�02 1 2.64E+00



Table 9
Ranking results based on Holm-Bonferroni procedure for the compared algorithms on test functions from f 41 to f 47.

Rank Algorithm z p h h Score

1 SL-PSO – – – – 4.62E+00
2 MLCC �1.07E+00 1.42E�01 5.00E�02 0 4.00E+00
3 CCPSO2 �1.32E+00 9.35E�02 2.50E�02 0 3.86E+00
4 DMS-L-PSO �1.48E+00 6.88E�02 1.67E�02 0 3.76E+00
5 sep-CMA-ES �2.80E+00 2.52E�03 1.25E�02 1 3.00E+00
6 EPUS-PSO �4.95E+00 3.74E�07 1.00E�02 1 1.76E+00
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statistically significant difference between the performances of DMS-PSO and SL-PSO on f 13 to f 40, which basically confirms
the results based on t-test. The ranking results for the high-dimensional problems, f 41 to f 47, are presented in Table 9. From
this table, we can conclude that SL-PSO has shown comparable performance to MLCC, CCPSO2 and DMS-PSO, the three algo-
rithms designed for solving large-scale optimization problems, and outperforms sep-CMA-ES and EPUS-PSO. These results
suggest that SL-PSO, despite its algorithmic simplicity and high computational efficiency, is promising also for solving
large-scale optimization problems.

4. Conclusion

This paper has introduced a social learning PSO (SL-PSO) inspired by learning mechanisms in social learning of animals.
Extensive experiments have been performed to compare the performance of the proposed SL-PSO with five representative
PSO variants on 40 low-dimensional test functions and another five state-of-the-art algorithms for large-scale optimization
on seven high-dimensional test functions. From these results, the following conclusions can be drawn. First, SL-PSO has been
shown to work consistently well without fine tuning of the parameters on a large number of test problems with the search
dimensionality varying from 30 to 1000. Moreover, SL-PSO has a higher computational efficiency in comparison with a few
representative PSO variants. Compared to most modern meta-heuristics for optimization, SL-PSO is easy to implement, com-
putationally efficient and requires no cumbersome fine-tuning of the control parameters. These properties make it very
appealing for solving real-world problems, where little problem-specific knowledge is available and fine-tuning of the con-
trol parameters is less likely, if not impossible. In the future, we would like to examine performance of SL-PSO on real-world
applications and extend the SL-PSO for multi-objective[16] or even many-objective optimization [37].
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