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Abstract—For many real-world optimization problems, the ro-
bustness of a solution is of great importance in addition to the so-
lution’s quality. By robustness, we mean that small deviations from
the original design, e.g., due to manufacturing tolerances, should
be tolerated without a severe loss of quality. One way to achieve
that goal is to evaluate each solution under a number of different
scenarios and use the average solution quality as fitness. However,
this approach is often impractical, because the cost for evaluating
each individual several times is unacceptable. In this paper, we
present a new and efficient approach to estimating a solution’s ex-
pected quality and variance. We propose to construct local approx-
imate models of the fitness function and then use these approxi-
mate models to estimate expected fitness and variance. Based on a
variety of test functions, we demonstrate empirically that our ap-
proach significantly outperforms the implicit averaging approach,
as well as the explicit averaging approaches using existing estima-
tion techniques reported in the literature.

Index Terms—Evolutionary optimization, fitness approxima-
tion, robustness, uncertainty.

1. INTRODUCTION

N MANY real-world optimization scenarios, it is not suf-
ficient for a solution to be of high quality, but the solution
should also be robust. Some examples include the following.

* In manufacturing, it is usually impossible to produce an
item exactly according to the design specifications. In-
stead, the design has to allow for manufacturing toler-
ances, see, e.g., [2], [14], and [39].

* In scheduling, a schedule should be able to tolerate small
deviations from the estimated processing times or be able
to accommodate machine breakdowns [17], [23], [32].

* In circuit design, the circuits should work over a wide
range of environmental conditions like different tempera-
tures [36].

* In turbine blade design, the turbine should perform well
over a range of conditions, e.g., it should work efficiently
at different speeds. Similar requirements exist for airfoil
design [31], [40].

There are a number of different possible definitions for robust-
ness (see, e.g., [6, p. 127]). Generally speaking, robustness
means some degree of insensitivity to small disturbances of
the environment or the design variables. One definition for
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robust solutions is to consider the best worst case performance.
Another definition of robust solutions is to consider a solution’s
expected performance over all possible disturbances, which
corresponds to a risk-neutral decision maker’s choice. In these
two definitions for robustness, only one objective is considered,
and we denote such approaches single objective (SO) robustness
optimization. However, robustness of solutions might be better
defined by considering both the quality and the risk separately,
i.e., by converting the problem into a multiobjective problem
[22]. We denote such approaches as multiobjective (MO) ro-
bustness optimization. This paper suggests model-based fitness
approximation methods that can be employed to improve the
computational efficiency of both SO and MO approaches to
robustness optimization.

Disturbances may appear in both environmental variables
and design variables. In the following, we focus on robustness
against disturbances of design variables, which is important,
e.g., in the case of manufacturing tolerances. Formally, if x
denotes a design vector (solution) of dimension d, and f(x) is
the fitness (in the context of robustness optimization f(x) is
also often called raw fitness, f,aw) of that particular solution,
then the expected fitness of solution x is defined as

Fop(3) = /_ Y fx 4 8) - p(6)d6 (0

where 6 is a disturbance that is distributed according to the prob-
ability density function p(§). Similarly, the fitness variance of a
solution can be defined as

) = [ T (F 4 ) — fop(x)? p(8)IE. @)

J — 00

Unfortunately, for reasonably complex problems, (1) and
(2) cannot be computed analytically, usually because f is not
known in a closed form. Alternatively, fexp and fyar can be
estimated by Monte Carlo integration, i.e., by sampling over a
number of realizations of §. However, each sample corresponds
to one fitness evaluation, and if fitness evaluations are expen-
sive, this approach is clearly not viable.

Therefore, new approaches are needed which allow to esti-
mate a solution’s expected fitness and variance more efficiently.
In this paper, we propose to use an approximation model to esti-
mate a solution’s robustness. Instead of using the costly raw fit-
ness function in the above mentioned Monte Carlo integration,
we rely on the approximation model for that purpose. In prin-
ciple, this idea could be used in combination with any suitable
approximation model like artificial neural networks, Kriging
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models, or Gaussian processes. In this paper, we use local ap-
proximation models, which have the advantage of being rela-
tively easy to construct and also seem appropriate to approxi-
mate the performance of a solution over a distribution of local
disturbances. Within that framework, we compare and discuss a
number of alternatives with respect to the approximation model
used (interpolation or regression), the complexity of the model
(linear or quadratic), the number and location of approximation
models constructed, the sampling method, and how approxima-
tion methods should be exploited for estimation. Empirical re-
sults confirm the superiority of our approach to some previous
approaches for either SO or MO robustness optimization.

Note that we subsequently use the terms raw fitness and
real fitness. Here, raw fitness is used in contrast to robustness
( fexps fvar), whereas real fitness is used in contrast to approxi-
mated fitness.

This paper is structured as follows. Section II provides a brief
overview of related work. We then introduce the evolutionary
algorithm (EA) for robustness optimization in Section III. A
short discussion of the approximation techniques used can be
found in Section IV. Then, in Section V, we present our new
approaches to estimating a solution’s expected fitness and vari-
ance. These approaches are evaluated empirically in Section VI
based on a variety of benchmark problems. The paper concludes
with a summary of this paper and some ideas for future work.

II. RELATED WORK

There are a wealth of publications regarding the use of ap-
proximation models to speed up EAs. Feedforward neural net-
works [16], [21], radial basis function networks [33], and poly-
nomials [7], [24] have been employed to improve the efficiency
of EAs. Besides, estimation of distribution algorithms (EDAs)
can also be considered as a class of algorithms that approxi-
mate the fitness landscape implicitly [41]. In the following, we
will focus on related literature regarding the search for robust
solutions. For a general overview on the use of approximation
models in combination with EAs, the reader is referred to [18]
and [19].

As mentioned in the introduction, evolutionary approaches to
robustness optimization can be categorized into SO and MO op-
timization approaches. By far, the majority of research activities
in this field follows the SO approach.

A. SO Robustness Optimization

An analytical expected fitness function is often not avail-
able, therefore, it is necessary to estimate a solution’s expected
fitness. Probably the most common approach is to sample a
number of points randomly in the neighborhood of the solu-
tion x to be evaluated, and then take the mean of the sampled
points as the estimated expected fitness value of x (see, e.g., [4],
[14], and [39]). This straightforward approach is also known
as explicit averaging. The explicit averaging approach needs
a large number of additional fitness evaluations, which might
be impractical for many real-world applications. To reduce the
number of additional fitness evaluations, a number of methods
have been proposed in the literature.

1) Variance reduction techniques: Using derandomized
sampling techniques instead of random sampling reduces
the variance of the estimator, thus allowing a more accu-
rate estimate with fewer samples. In [5] and [26], Latin
Hypercube Sampling is employed (cf. Appendix B),
together with the idea to use the same disturbances for all
individuals in a generation.

2) Evaluating important individuals more often: In [4], it
is suggested to evaluate good individuals more often than
bad ones, because good individuals are more likely to sur-
vive, and therefore a more accurate estimate is beneficial.
In [6], it was proposed that individuals with high fitness
variance should be evaluated more often.

3) Using other individuals in the neighborhood: Since
promising regions in the search space are sampled several
times, it is possible to use information about other indi-
viduals in the neighborhood to estimate an individual’s
expected fitness. In particular, in [4], it is proposed to
record the history of an evolution, i.e., to accumulate all
individuals of an evolutionary run with corresponding
fitness values in a database, and to use the weighted av-
erage fitness of neighboring history individuals. Weights
are assigned according to the probability distribution
function of the disturbance. We will use this method later
for comparison and refer to it as weighted history.

While all of the above methods explicitly average over a number
of fitness evaluations, Tsutsui and Ghosh present in [37] and
[38], an idea to simply disturb the phenotypic features before
evaluating an individual’s fitness. As the EA is revisiting
promising regions of the search space, it implicitly averages
over a set of disturbed solutions, which can be seen as an im-
plicit averaging approach. Using the schema theorem, Tsutsui
and Ghosh show that given an infinitely large population size
and the proportional selection method, a genetic algorithm
with single disturbed evaluations is actually performing as if
it would work on fexp. This implicit averaging has proven
successful for low-dimensional problems. Subsequently, we
refer to this approach as single disturbed.

B. MO Robustness Optimization

In design optimization, several papers have treated the search
for robust optimal solutions as a MO problem, see, e.g., [8] and
[9]. However, relatively little attention has been paid to evo-
lutionary MO search for robust solutions. Ray [30], [31] con-
siders robust optimization as a three-objective problem, where
the raw fitness, expected fitness, and the standard deviation are
optimized simultaneously. In that work, a large number of addi-
tional neighboring points are sampled to estimate the expected
fitness and standard deviation. In [22], search for robust optimal
solutions is considered as a tradeoff between optimality (the raw
fitness) and robustness, which is defined as the ratio between the
standard deviation of fitness and the average of the standard de-
viation of the design variables. To estimate the robustness mea-
sure, the mean fitness and the standard deviation are estimated
using neighboring solutions in the current generation, without
conducting any additional fitness evaluations, but only using the
individuals in the current generation to estimate the local fitness
variance. This becomes feasible because the local diversity of
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Algorithm 1 Robustness EA

t—20

initialize population P(0)

evaluate P(0) with real f

add P(0) to the History

estimate fexp (fvar) of P(0) individuals

REPEAT
selection: mating pool M (t) < select(P(t))
recombination: M'(t) « recombine(M (t))
mutation: M" (t) — mutate(M’(t))
evaluate M"(t) with real f
add M" (t) to the History
estimate fexp (fvar) of M”(t) individuals
update-population: P(t + 1) «— u(P(t) U M"(t))
t—t+1

UNTIL termination criterion met

Alg. 1. Pseudocode of the algorithm.

the population is maintained by using the dynamic weighted ag-
gregation method [20] for multiobjective optimization.

C. Main Contributions of This Paper

One of the main research efforts in evolutionary search for
robust solutions is to reduce the number of computationally ex-
pensive fitness evaluations. So far, the main idea has been to
calculate the mean fitness in the SO the approach [4], [6] or the
fitness variance in the MO approach [22] directly based on the
neighboring solutions in the current population or in the entire
history of evolution.

Using the existing neighboring solutions to calculate the
mean and variance of the fitness is only a very rough ap-
proximation of the Monte Carlo integration. To address this
problem, this paper suggests to construct computationally effi-
cient models using available solutions to replace the expensive
fitness function in calculating the mean and variance of fitness
values. If the model is sufficiently good, we can estimate the
mean and variance much more reliably using the Monte Carlo
method. Both interpolation and regression methods in combi-
nation with a variety of model distribution techniques, such as
single model, nearest model, ensemble, and multiple models
are investigated. The effectiveness of using models to estimate
the mean and variance of fitness values are verified on six test
problems for the SO approach and three test problems for the
MO approach to robust optimization.

III. EVOLUTIONARY ALGORITHM (EA) FOR
ROBUSTNESS OPTIMIZATION

The evolutionary search for robust solutions proposed in this
paper uses approximation models to estimate a solution’s ex-
pected fitness, as well as the variance without additional fitness
evaluations. While in principle, this idea is independent of the
approximation model, we use local approximations of the fitness
surface [24], [33]. Training data for the approximation model
are solely collected online, i.e., the EA starts with an empty his-
tory and collects data during the run. In each generation, the real
fitness function is evaluated at the location of the current indi-
viduals, these data are then stored in a database which we denote
history. See Algorithm 1 for the pseudocode of the algorithm.
With this data collection strategy, the total number of real fitness
evaluations equals the number of generations times population

size, which is the same as required for a standard EA. Thus, ad-
ditional fitness evaluations needed for robustness evaluation is
avoided.

In robustness optimization, the question on how to deal with
constraints is a challenging research topic. Compared with opti-
mization based on the raw fitness, a solution is no longer strictly
feasible or infeasible in search for robust solutions. Instead,
it might be feasible with a certain probability. Promising ap-
proaches to handle constraints are presented in [26] and [30].
However, a further discussion of this topic is beyond the scope
of this paper. In the EA used in this paper, we simply bounce off
the boundary if a an individual would lie outside the parameter
range. Samples drawn from an infeasible region are set to a bad
constant value.

IV. FITNESS APPROXIMATION
A. Interpolation and Regression Techniques

We attempt to estimate the expected fitness and the variance
of each candidate solution based on an approximate model that
is constructed using history data collected during the optimiza-
tion. In this way, no additional fitness evaluations are needed.
For fitness approximation, we use interpolation and local re-
gression. In the following, we provide a short description of in-
terpolation and regression techniques. This type of model has
been used in [24] to smooth out local minima in evolutionary
optimization. Readers are referred to [25] for further details on
interpolation and regression techniques.

A quadratic polynomial interpolation or regression model can
be described as follows:

d d d
f(x) =B+ Z Bizi + Z Z ﬂd_1+i+jwixj 3)
=1 i=1 j=1
where d is the dimensionality of x. Equation (3) can be rewritten
as

f(x) = Z XiB; &)
=1

where X = [l z1...2471%2... 2473 ...27] and B is the
vector of model coefficients of length n. = (d + 1)(d + 2)/2.
Typically, we have a set of n;, > n. training data
(XD W) (XP) @), (X (Mn) i)y and the goal
is to find model parameters B that minimize the error on the
training data.

The most popular estimation method is the least square
method, which minimizes the residual sum of squared errors

minJ = (y@ - (X)) )
i=1

Additionally, weights can be assigned to the residual distances,
i.e.,

Min

min.J = Z w; (y(’i) _ f(XL))2 6)
=1

where w; is a weight for the ith training sample. This is also
known as local regression. As training data, we choose all his-
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tory data which lie within the range of the disturbance distri-
bution of the estimation point, i.e., n;, can be different for dif-
ferent approximation points. If, however, n;, is smaller than the
desired minimum number of training data (as specified before-
hand), data points from outside the disturbance range are used,
too (cf. Table II in the simulation studies section). Weights are
usually assigned with respect to the distance between the loca-
tion of the training sample point and the so-called fitting point
around which the model is constructed (denoted as Xg, here-
after). As weight function wy;, the tricube function is used (7),
where b denotes the bandwidth that is chosen such that it covers
all model input data

@ _ 20\

Solving (6), we get

g = (XTWX)™

X"y ®)
where W > 0 is a diagonal matrix with w; as di-
agonal elements, X = [XWX®  X0uw)]T and
y = [yWy@ . yrm)],

Note that to fully determine the parameters in the model, it is
required that the number of training data n;;,, be equal to or larger
than the number of coefficients n.. The special case of n;, =
n. represents interpolation. In this case, a B* exists such that
residual error in (6) can be reduced to zero, i.e., the approximate
function intersects all training data points. We need to find a 8
such that (9) is true

Xp=y- ()
By inverting X, we get the solution

g =X"ly. (10)

Our motivation to distinguish between interpolation and
regression is that a surface which is generated by an interpola-
tion model intersects the nearest available real fitness points,
whereas regression aims at smoothing out a given data set. With
a deterministic fitness function, there is no need for smoothing
because there is no noise that can be removed by regression.
However, regression has the advantage of covering a larger
neighborhood space.

From the large number of available interpolation methods
[1], we decided to use one of the simplest methods, which
chooses the nearest available history points as training data
to construct the model. As a result, some of the points on the
approximated surface are interpolated, and some are actually
extrapolated [29, Ch. 3]. Nevertheless, we denote this method
interpolation throughout this paper. This type of interpolation
may return a discontinuous surface. A method that generates
a continuous landscape is natural neighbor interpolation [35],
which chooses the training data such that the model fitting
point lies within the convex hull defined by the training data.
The drawback of natural neighbor interpolation is its high com-
putational complexity, particularly when the dimension of the

design space is high. Thus, we use the standard interpolation
method which uses the nearest neighbors in this paper. For
local regression, we choose the nearest available history data as
training data for the model, too. Again, the distance is measured
with respect to the model fitting point.

Successful interpolation and regression requires X to have a
rank of n., i.e., n. of the training samples have to be linearly
independent. This might not always be the case, in particular
when the EA converges. If, in regression, we find X to be sin-
gular, we simply add the nearest available data points (which
are not yet used) to the model, and check again for linear de-
pendencies. This loop is repeated until X has a full rank. In
this case, (8) is solved by Cholesky decomposition [29]. In in-
terpolation, however, linearly dependent training data points in
X need to be detected and replaced by other points. Therefore,
we first need to check for linear dependencies before solving
(10). In our methods, this is done using QR decomposition with
column pivoting [13]. If X has a full rank, (10) can be solved
by LU decomposition [13], otherwise this loop continues until
X has a full rank.

It should be pointed out that when interpolation is used, it
is possible to produce severely incorrect estimations in situa-
tions when the history data are ill-distributed, for example, when
some of the nearest neighbors are located very close to each
other compared with their distance to the model fitting point on
a steep part of the fitness function. In order to reduce the bias
introduced by such wrong estimations, we need to detect severe
outliers. In particular, history data are sorted with regard to their
fitness value. An approximation f (x5) at a sample point X, is
defined as an outlier, if

f(xs) ¢ [Ho.o1 — 5(Ho.99 — Ho.01);

Ho .99 + 5(Ho.99 — Ho.01)] (11)
where Hy o1, Ho.99 represent the 0.01 and 0.99 quantiles of the
sorted history fitness values. This detection method is common
in the realm of box plots. Outliers are replaced by the average
real fitness of the current population (which is available at that
time, cf. Algorithm 1). Theoretically, this method can cut off
extremely good (correctly estimated) individuals, however, with
the setting as in (11) this is very unlikely. In our experiments, it
is found that cutting off extreme estimated fitness values leads
to more reliable results.

B. Computational Complexity

The motivation to use approximate models instead of addi-
tional samples is that in many applications the computational
cost of a fitness evaluation is larger than the cost of building
up an approximate model. In the following, we briefly present
a theoretical analysis of the computational overhead for the ap-
proximate models used in this paper, namely, interpolation and
regression.

The three steps for building up an approximation model are
the following.

1) Calculate the Euclidean distance between the model

fitting point and all available history training data (ny,).
Since the Euclidean distance can be computed in linear
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time (with respect to the dimensionality d), the overall
cost are in the order O(nd).

2) Sort training data with respect to the Euclidean distance.
The complexity of the Quicksort algorithm [15] is in the
best case O(ny, log, ny,) and the worst case O(n?).

3) Computing the interpolation/regression polynomial.
In interpolation, the most expensive element is QR de-
composition which requires O(n?) flops.! In regression
the most expensive element is Cholesky decomposition
which requires O(n?) flops, where n. is the number
of model coefficients. This means both approximation
methods have a complexity of O(n.?).

The overall complexity for building up one approximation
model sums up to

O(npd +n3 +n.>). (12)
In case of singularities, matrix X is modified and step 3 is re-
peated, thus, the computational cost increases. On a state-of-
the-art personal computer, the computation time is in the mil-
lisecond order, which can be regarded as negligible compared
with expensive fitness evaluations of many real-world problems.
For example, a computational fluid dynamics simulation for
blade design optimization takes often from tens of minutes to
several hours. Of course, the computation time can no longer be
negligible if a more complex model is constructed with a large
number of samples.

V. ROBUSTNESS ESTIMATION

Since we cannot expect the overall fitness function to be of
linear or quadratic nature, any linear or quadratic approxima-
tion model is usually only a local approximation. Thus, for es-
timating the fitness at different points in the search space, dif-
ferent approximation models have to be constructed. In this sec-
tion, we discuss the questions of where approximation models
should be constructed, how many should be constructed, and
how they should be used to estimate foxp and fy,, of all individ-
uals of the population.

A. Integral Approximation

The integrals of (1) are estimated for a given point x° by
evaluating (with respect to the approximated fitness function f )
a set of n samples x; = x” + §; in the neighborhood of x°. We
get the estimations

foxp(xo) = Z %fA(Xz)
=1
funl) = 0 LI ) ~ oGP, 13)

To generate the samples x;, we use Latin hypercube sampling
(refer to Appendix B) which has proven to be the most accu-
rate sampling method given a limited number of sample points
[5]. In Latin hypercube sampling, the number of samples solely

1Flop—ﬁoating point operation, i.e., one addition, subtraction, multiplication,
or division of two floating-point numbers.

depends on the number of quantiles and is independent of the
dimensionality, thus the size of the sample set can be arbitrarily
scaled.

B. Model Distribution

As explained above, we estimate a solution’s robustness
based on the estimated fitness of a number of sampled points in
the neighborhood. Since local approximation models are only
reliable in a small neighborhood of their fitting point, several
models are needed to evaluate a population. One important
question therefore is where to construct the approximation
models. In principle, one might attempt to place them at strate-
gically favorable positions, so that a maximum accuracy can
be obtained with a minimum number of models. In this paper,
we used two simple strategies: to construct one model around
each individual in the population, and to construct one model
around each sample point. While the latter promises to be more
accurate, it requires to build many more models, and therefore
demands for much higher computational resources.

The next question is how the models are used for estimating
the fitness of a particular sample. We have tested three possible
approaches. First, one might use the model constructed around
an individual to estimate the fitness of all samples used to eval-
uate this individual. Second, one can use the nearest model (i.e.,
where the Euclidean distance to the model fitting point is min-
imal) for each sample, because that model probably has the
highest accuracy. Finally, one might combine the estimates of
several models in the hope that the estimation errors of the dif-
ferent models cancel out.

Overall, we have tested the following four different settings.:

* Single model: In this straightforward approach, we build
one approximation model per individual, i.e., the models’
fitting points are the same as the individuals’ locations in
the search space, and we use this model for all sample
points generated to estimate that individual’s fitness. This
approach, of course, assumes that the simple linear or
quadratic models are sufficient to approximate the raw fit-
ness function within the range of expected disturbances 6.

¢ Nearest model: Again, one model is constructed around
each individual, but we always use the nearest model to es-
timate the fitness of a sample. Note that the nearest model
can be that of a neighboring individual and is not always
the one of the associated individual (which can have a
greater distance).

* Ensemble: This approach is also based on one model con-
structed around each individual. However, we estimate
the function value at a particular sample point x5 by a
weighted combination (ensemble) of models that corre-
spond to the m nearest fitting points. The approximated
functional value is calculated as follows:

fons(x) = ——— 3 wifilx.)

ici<m Vi 1<i<m
1

I — xall,

(14)

Ui

where v; is a weight function and m the ensemble size.
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Fig. 1. (a) Illustration of single model and (b) multiple models for the 1-D
case. The quantiles of the é distribution are denoted ¢1, ¢2, and ¢3. The dotted

lines represent boundaries of the quantiles. Samples are drawn from the center
of each quantile and evaluated with the approximation model.

e Multiple models: In this approach, a separate model is
constructed around each sample, and exactly this model
is used to estimate the sample’s fitness.

The first three methods share the same advantage that the
number of approximation models needs to be constructed is
small. In fact, they even use the same model locations, namely,
exactly one model at the location of each individual in the
population.

Fig. 1 illustrates the difference between the single model and
multiple models approaches for the one-dimensional (1-D) case
using a linear interpolation model. It can be seen that in this
example, a single interpolation model cannot fully describe the
local fitness landscape that is given by the history data.

C. Estimator Properties

In general, a desired property of an estimator is that the
modelA is as accurate as possible, i.e., the estimation error
e =|f(x%) — f(x°)|is minimal. In most applications, it is also
desired that the estimator is unbiased, i.e., the expected esti-
mation error is zero, E(f(x°)) = f(x°). In the context of an
EA, however, a low standard deviation of the estimation error
o seems more important, provided that the biases on different
points are consistent. The following example illustrates the
point: Assume that for a given estimator, e has a probability
distribution, with mean p. and standard deviation o.. Consider
the extreme case 0. = 0: With rank-based selection, an EA
performs exactly as if the real fitness is used independent of
Lte, but even with fitness proportional selection the influence
of p. on the composition of the next generation is low. We
conclude that the standard deviation of the estimation error is
the important estimator property in the context of EAs. See [16]
for more discussions on error measures for models in fitness
approximation.

D. Computational Complexity

In Section IV-B, we calculated the computational cost of
building a single approximation model. Using a number of
approximate models to estimate robustness incurs additional
computational cost. The computational cost using the four
proposed model distribution methods varies. Due to space lim-
itations, we do not present a detailed analysis for each method,
but briefly list the cost components of which each robustness
estimation is composed.

* Building up approximation models. The cost for
building one approximation model as given in (12) are to
be multiplied by the number of models that are needed per
estimation. In the case of single model, nearest model,
and ensemble, only 1 model is built per estimation,
whereas in multiple models n models are built [cf. (13)].

¢ Constructing the Latin hypercube set is possible in
linear time, i.e., O(n) where n is the number of samples.

e Cost incurred by evaluating polynomials: For a single
polynomial the complexity is O(n.), where n. is the
number of model coefficients. How many polynomials
are to be evaluated depends on the number of sample
points n and the model distribution method, i.e., in the
case of single model, nearest model, and multiple models,
one polynomial is evaluated per sample point, but in the
case of ensemble, a set of m polynomials is evaluated,
where m is the ensemble size. R

* Calculating fexp(z), or (fexp(2), fvar(z)), i.e., aver-
aging (the square) is done in linear time with respect to
the sample size, i.e., O(n) [cf. (13)].

¢ Additional cost: In the case of nearest model, additional
calculations are to be done in order to determine the
nearest model. In ensemble, additional cost is incurred
because the m nearest models need to be found and the
averaging over the polynomial evaluation results needs
to be done.

VI. SIMULATION STUDIES

The first goal of the simulation studies is to investigate empir-
ically whether fitness approximation is able to effectively guide
the evolutionary search for robust solutions. Additionally, we
compare performance of interpolation and regression for fitness
approximation. Another interesting issue in fitness approxima-
tion is the influence of model distribution on the performance
of fitness approximation and thus on the search effectiveness.
Finally, we compare our methods to the previously proposed
methods single disturbed [37], [38] for SO robustness optimiza-
tion and weighted history [4], [22] for both SO and MO robust-
ness optimization (cf. Section II). Note that in the MO case,
weighted history estimates both fe., and f.., empirically by
evaluating the nearest neighbors of the history. This is an ex-
tension of the original MO method [22] because here the esti-
mate is calculated based on the current population only, and no
weighting is used. Preliminary experiments showed that adding
these two features to the method improves the performance. Ad-
ditionally, we run the EA using the raw fitness as optimization
criterion, i.e., the EA is run without robustness scheme. Since
fexp is different from the raw fitness optimum, this setting is ex-
pected to have poor performance, and only serves for reference
purposes. Finally, we run the EA, estimating robustness by eval-
uating samples with the real fitness instead of approximations.
In other words, the EA has a very good estimator for the real
fexp as defined in (1). We denote this real feoyp, although this is
strictly speaking only a very good estimation. This method of
course requires a large number of real fitness function evalua-
tions. For example in our five-dimensional (5-D) test problems,
it requires 250000 fitness evaluations, which is 50 times (the
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TABLE 1
SUMMARY OF COMPARED METHODS

New techniques (linear and quadratic , interpolation and regression)

SM Single model

ENS-5 Ensemble method with ensemble size 5
NEAR Nearest model

MM Multiple models

Benchmark techniques used for comparison

Jraw

Single disturbed
Weighted history
real fexp

pling)

Raw fitness optimization (without robustness scheme)

Individual is disturbed before evaluation

Estimation of fexp based on the weighted mean of (previously evaluated) neighbors
Estimation of fexp based on real fitness function evaluations (latin hypercube sam-

TP 1

TP 2

TP 3

TP 6

Fig. 2.

number of samples) higher than when approximation models are
used. This becomes infeasible in many real-world applications.
For our test problems, however, it provides a good reference of
the performance that our approximation methods could reach.
For clarity, Table I, summarizes all compared methods.

A. Experimental Settings

1) Test Problems: To compare different algorithms for
solving robust optimization, a number of test problems (TPs)
are suggested in this paper. We identify four categories of TPs
for SO robustness according to the fitness landscape change
from the raw fitness to the effective fitness. Additionally, three
TPs are designed for MO robustness optimization, of which
TP 7 has a continuous Pareto front and the TP 8 has a discrete
Pareto front. All TPs considered in this work are minimization
problems and a detailed description of the TPs can be found in
Appendix A.

In the following, we attempt to divide the TPs into four cat-
egories according to the differences between the raw and ex-
pected fitness landscapes.

1-D test problems for SO robustness optimization (TP 1-6). Figures show f and f.x, (in TP 4, we zoom into the interesting area).

¢ Identical Optimum (Category 0): Raw fitness and ro-
bust optimum are identical. Since these problems could
be solved by simply optimizing the raw fitness, they are
not really challenging. In the simulation studies, we do
not test problems of this category.
¢ Neighborhood Optimum (Category 1): Raw fitness and
robust optimum are located on the same hill (with respect
to raw fitness).
* Local-Global-Flip (Category 2): A raw fitness local op-
timum becomes the robust optimum.
*  Max-Min-Flip (Category 3): The robust optimum (min.)
is located at a raw fitness maximum.
The above categorization is not tailored for our approximation
approach but illustrates challenges to robustness optimiza-
tion in general. With regard to approximate models, another
meaningful categorization might be to distinguish between
continuous and discontinuous fitness landscapes, since the
latter are expected to be more difficult to be approximated.
Now we present six test problems (TPs 1-6, see Fig. 2) part of
which are taken from the literature.
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All test problems are scalable to arbitrary dimensions. In this
work, experiments are conducted on the TPs of dimensions 2,
5, and 10.

TP 1 which is taken from [6], is a discontinuous Cate-
gory 1 test problem. Although it is unimodal, the problem
might be difficult to be approximated because of the dis-
continuity.

TP 2 is a continuous version of TP 1, and thus is a
Category 1 problem, too. We expect the approximation
methods to perform better on TP 2 than on TP 1.

TP 3 is taken from [37] and is a variant of the function
used in [11]. There are four sharp peaks and one broader
peak. The global optimum for fey, is located on the third
(broad) peak, which is a local optimum in the raw fitness
landscape. Thus, TP 3 is a Category 2 test problem. In
[37], this test problem was tested for dimensions 1 and 2,
in our simulation studies we will use this test function in
up to ten dimensions. In particular, in higher dimensions,
this test function becomes extremely difficult since the
number of local optima equals 5.

TP 4 is multimodal with respect to f, whereas the fexp
landscape is unimodal [34]. In the 1-D illustration (Fig. 2),
we see that the raw fitness optima (located on a d-dimen-
sional sphere) are “merged” to a single robust optimum
(x; = 0). Interestingly, the robust optimum (minimum) is
a maximum in the raw fitness landscape. Therefore, TP 4
is a Category 3 test problem.

TP 5 is similar to TP 4, but here a single robust optimum is
divided into multiple optima. Since the new robust optima
are located where the raw fitness maxima are, TP 5 falls
into Category 3, too.

TP 6 is a variant of the function used in [22]. When the
feasible range of z;,7 = 1,...,d, is restricted to [0; 10],

exp

1-D problems for MO robustness optimization (TP 7-9). (Top row) f, fexp, fvar. (Lower row) Tradeoff between fexp and foar.

the optimum with respect to f,,w is at x; = 0.5, whereas
the fexp Optimum is at x; = 3.5. Similar to TP 3, this test
problem becomes very difficult for a large d. For TP 3,
no clear assignment to one of the categories is possible,
however, it combines aspects of TP 2 and TP 3, and can
thus be seen as a mixed Category 1—Category 2 problem.
For MO robustness optimization, we define problems
that provide a tradeoff between the first objective foxp
and the second objective fyar, i.e., problems with a Pareto
front in a fexp — fvar Space. Since muliobjective evo-
lutionary algorithms (MOEA’s) aim at finding a set of
Pareto-optimal solutions, the test problems may catego-
rized according to the continuity of the Pareto front. For
MO approaches to robustness optimization, we carried out
empirical studies on a set of three test problems (TPs 7-9),
see Fig. 3.
TP 7 is extremely simple with respect to the optimization
of a single objective f or foxp. For MO optimization with
fexp and fyar, it provides a continuous Pareto-front. The
challenge to the MOEA here is to converge to a popula-
tion which has a broad coverage of the Pareto front. Of
course, the difficulty increases with an increase of the di-
mensionality. In the simulation studies we set d = 5.
TP 8 which is taken from [22], provides a discontinuous
Pareto-front. Since the number of separated Pareto-op-
timal solutions increases rapidly with the increase of the
dimension, we used this test problem with d = 2.
TP 9 is a variant of TP 8 and has similar properties. The
main difference is that the number of Pareto-optimal so-
lutions is relatively lower. We used this test problem with
d=5.

2) Performance Measure: In the SO case, we choose the
best individual of the final generation with respect to the ap-
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proximated fexp as the final solution. Then, we reevaluate feoy,
of the final solution using the real fitness function and Strati-
fied sampling (see Appendix B) with a large number of sam-
ples to get a rather accurate estimate of the real expected fitness
value. In the figures, we simply refer to this criterion as fitness.
To reduce the influence of randomness, all reported results in
the SO simulation studies are averaged over 20 runs with dif-
ferent random seeds. Statements about significance are based on
one-sided ¢-tests and one-sided Fisher tests with a significance
level of 97.5%.

A similar method in MO would have been to compute the
set of nondominated solutions based on the approximated fit-
ness values of the final generation. However, the nondominated
solutions based on the approximation model may no longer be
nondominated when they are reevaluated with the real fitness
function. Therefore, we decided to use a simpler technique: We
evaluate foxp and fy, of the entire final generation using the real
fitness and compute the nondominated front based on these eval-
uations. As performance criterion, we plot the 50% attainment
surface [12] based on the attainment surfaces of 11 runs. The
50% attainment surface can be interpreted as the typical result.
We refer to it as median attainment surface. Since the median
attainment surface only allows a qualitative comparison, we ad-
ditionally used a quantitative performance index. From the large
number of proposed performance indices [28], we used the Ay-
pervolume [42].

3) Robustness Estimation Methods and Modeling Tech-
niques: The compared modeling techniques are linear in-
terpolation, quadratic interpolation, linear regression, and
quadratic regression. For robustness estimation the following
four methods have been tested: single model (SM), multiple
models (MM), nearest model (NEAR), and the ensemble (ENS)
method. For the ensemble method, a number of ensemble sizes
have been tested. Considering all test problems, an ensemble
size of 5 turned out to be most effective and stable. We there-
fore present in all figures ensemble with an ensemble size of
5 (ENS-5). In the simulation, the sample size [n in (13)] of
Latin hypercube sampling was set to 10, 50, and 100 when
the dimension equals 2, 5, and 10, respectively. Other related
parameters are provided in Table II.

4) Evolutionary Algorithm: A conventional evolution
strategy has been employed for SO search of robust optimal
solutions, whose parameters are outlined in Table II. Nondom-
inated sorting genetic algorithm II (NSGA-II) [10], which is
one of the most efficient MOEAs, has been employed for the
MO search of robust solutions and the parameters used in the
simulations are listed in Table II. Note that instead of the sim-
ulated binary crossover (SBX) used in the original algorithm
[10], the conventional one-point crossover and mutation have
been adopted. With these settings, the total number of calls to
the real fitness function amounts to 5000 in our simulations.

B. SO Results

All results of the SO simulation studies are presented in
Fig. 4. As can be seen, many of our new methods (geometric
symbols) yield excellent performance on the two-dimensional
(2-D) and 5-D test problems (compared with the reference
solution real feoyp denoted by the solid line). In dimension 10,

TABLE 1II
EA PARAMETERS

Parameters of the standard ES

(i, A) - reproduction scheme
standard evolution strategy
recombination (obj. variables)
recombination (strat. variabl.)
no. generations

(15,100)

Cinit € [00].7 10]
discrete

generalized intermediate
50

NSGA-II parameters

representation gray coding
number of bits (representation) 30
crossover probability 0.9

number of crossover points 1

Aip probability (mutation) 0.01
population size 100

no. generations 50
Approximation parameters

history size (max) 5000

regression bandwidth
regression min. training data
regression weight function

disturbance range
2x no. model coefficients
tricube

however, our best methods fail to achieve a solution quality
comparable to the case when using real fe, on two multimodal
test problems (TP 3 and TP 6). This is to be expected, taking
into account that the same number of fitness evaluations (5000)
has been allowed independent of the number of dimensions.

1) Estimation Methods: When comparing the different esti-
mation methods, the results provide clear evidence that the mul-
tiple models method works best. In the 2-D problems, the best
regression method combined with single model in most cases
achieves a similar solution quality. However, only in one (TP
4) of the six 5-D test problems, multiple models does not out-
perform the other methods. In the ten-dimensional (10-D) test
problems the performance difference between multiple models
and the other techniques are reduced. On the one hand, this is be-
cause building a larger number of models yields more accurate
fitness surface approximations only if the space is sufficiently
covered with history data. Meanwhile, some of the 10-D test
problems (TP 3, TP 4) seem to be too difficult to find a robust so-
lution with the limited number of 5000 fitness evaluations. Here,
none of the methods finds the global optimum. On most test
problems, nearest model is slightly better than the simple single
model method. Using an ensemble of the five nearest models
yields an additional benefit when using the (more stable) regres-
sion models.

As already discussed in Section V-C, a low standard de-
viation of the estimation error o, is expected to improve the
performance of a fitness estimation-based EA. This could be
a reason why the ensemble method performs better than the
nearest model method: Fitness approximations usually suffer
from some approximation error. For estimating fexp,, models are
evaluated at sample points and the fex, estimation is a result of
averaging. Technically speaking, the convolution of ns approx-
imation error distributions reduces o.. However, this assumes
the ns approximation error distributions to be statistically
independent. This is not realistic because many approximation
errors result from the same approximation model. In the single
model method, for instance, all ns samples are evaluated with
just a single model. But even in the multiple models case, the
models built at ns sample points are likely to be equal or similar
if the history data density is low. If statistical dependencies are
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Fig. 4. Results of SO simulation studies (cf. Table I): All test problems (TP 1-6) in dimensions 2, 5, 10, averaged over 20 runs. If symbols are missing in the
figures, this indicates that the corresponding method’s performance is worse than the largest fitness value on the respective axis.

present, o, is increased by the covariances of the approximation  convolution that potentially reduces the standard deviation
error distributions. The ensemble method features an additional —of the approximation error for a single sample. However, all
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TABLE III
o. (TP 6, Multiple Models d = 5)
Hist.data | lin.interp. quad.interp. lin.regr. quad.regr.
1000 0.38 0.47 0.22 0.30
10000 0.25 0.28 0.18 0.13

ensembles are constructed based on the same set of available
approximation models. Thus, the o.-reducing convolution
effect is diminished by statistical dependence. Based on the
above discussions, ensemble would be expected to perform
at least as good as nearest model. However, ensemble suffers
from taking models into account with a fitting point that has a
larger distance from the sample, which naturally increases o,.
In our simulation studies, the o reducing convolution effect of
ensemble seems to be dominating, since ensemble (with five
models) yields better results than the nearest model method.
This must be due to the convolution effect, because ensemble
and nearest model make use of the same set of approximation
models.

To summarize, the multiple models method is the most effec-
tive and reliable modeling method on the tested problems, al-
though at a relatively high cost, compared with ensemble which
can be considered as extremely efficient in this case.

2) Approximation Methods: From Fig. 4, we find that the re-
gression methods outperform the interpolation methods in most
cases (the circle and square are below the diamond and triangle
in the same column). Considering all four estimation methods
on the six test problems in all dimensions (totals to4-6-3 = 72
scenarios), the two exceptions occur on 2-D TP 4 when en-
semble method is used and on the 10-D TP 6, which has shown
to be too difficult for all methods. The superiority of regression
can clearly be observed on the 5-D test problems.

The main reason is that the interpolation methods are likely
to produce severely wrong estimations: By counting the number
of outliers, we found that interpolation is much more vulner-
able to outliers. As a result, the standard deviation of the esti-
mation error (o, ) is larger in interpolation than in regression.
This observation has been verified empirically in an additional
experiment, where 1000 and 10 000 data points were randomly
generated in the 5-D space. Based on these data sets, foxp, Was
estimated with different approximation methods. By running
the experiment multiple times and comparing the estimations to
the real fexp, we get an empirical distribution of the estimation
error e. The resulting empirical standard deviation o, is pre-
sented in Table III, for different approximation methods (TP 6,
multiple models, d = 5). We find a significant difference be-
tween the 0. produced by interpolation and regression. These
results show that regression is clearly the preferred method in
our simulations.

3) Approximation Polynomials: Concerning the two poly-
nomials used in the regression methods, no clear conclusion
can be drawn on whether a linear or quadratic model performs
better. In general, it would be expected that a quadratic regres-
sion model performs at least as good as a linear model be-
cause a linear polynomial is a subset of a quadratic. However,
a quadratic model requires significantly more training data than
a linear model. By adding data points of a larger distance to
the model fitting point, the local fitting might become worse al-

though polynomials of a higher order are used. With multiple
models, the model is only evaluated at its fitting point.

Whether to choose a linear or a quadratic model of course will
depend strongly on the problem properties. However, in higher
dimensions building up a quadratic model is no longer feasible,
because a large number of training data (at least the number of
model coefficients n. = (d + 1)(d + 2)/2) are required. Since
the linear model has demonstrated good performance on our test
problems when it is combined with multiple models, we propose
to use the linear model in this case.

4) Weighted History: Comparing our approach to weighted
history (dashed line), we find that particularly in dimensions
higher than 2, the multiple models method combined with re-
gression models performs significantly better on all test prob-
lems. In the 2-D case, our approach is superior in all test prob-
lems except TP 3 and TP 4. This may be explained by the asym-
metry that is given around the global f.c, optimum of most
of the problems where our approach is superior (TP {1,2,6}):
Since weighted history only takes into account the Euclidean
distance of available history data, the sample average might be
strongly biased. In higher dimensions, weighted history fails to
find an acceptable solution. This is due to the sparsity of his-
tory data in higher dimensions. Sufficient estimation accuracy
with the weighted history approach requires that a minimum
number of history data lie in the stochastic neighborhood of the
individual. In contrast, when using approximation models, ad-
ditional history data points from outside the disturbance range
can be used to construct the model.

To summarize, estimating robustness based on approximation
models seems to be more effective than using a weighted history
method.

5) Single Disturbed: In the SO case, we finally compare the
proposed methods (explicit sampling with help of approximate
models) with the Single disturbed approach with implicit aver-
aging [37]. From Fig. 4, we see that on all test problems, this
approach fails to find an acceptable solution (dotted line). This
is surprising, since TP 3 is taken from [37] where the single dis-
turbed approach has proven successful in the 2-D case. How-
ever, in that paper, a binary-coded genetic algorithm with pro-
portional selection is employed, whereas the real-coded evo-
lution strategy with strategy parameter self-adaptation is em-
ployed in this work.

For a fair comparison of the methods, five settings for the EA
with single disturbed evaluations have been tested, in particular,
EAs without self-adaptation combined with different selection
pressures were tested, and compared against our best approxi-
mation method (achieved with Setting 1). The different settings
are listed in Table IV and the results of the simulation are shown
in Fig. 5.

As can be seen, single disturbed performs worse than the
explicit averaging method using an approximate model inde-
pendent of the parameter settings. Also, single disturbed seems
to be particularly ineffective in combination with self-adapta-
tion. This can be seen by comparing Settings 1 and 2. Since the
step-size cannot be adjusted without self-adaptation, we tested
different (fixed) step-sizes. Reducing the selection pressure in
form of a larger parent population size (Settings 3 and 5) im-
proves the performance of single disturbed.
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TABLE IV
PARAMETER SETTINGS FOR COMPARISON
Setting 1 “Standard setting”, i.e. (15,100), standard evolution strategy with o, € [0.01;1.0],
recombination (objective parameters): discrete; recombination (strategy parameters):
generalized intermediate
Setting 2 as Setting 1, but no strategy parameter self-adaptation, object variables are mutated
normally distributed with ¢ = 0.1
Setting 3 as Setting 2, but (50, 100)
Setting 4 as Setting 1, but no strategy parameter self-adaptation, object variables are mutated
normally distributed with o = 0.5
Setting 5 as Setting 4 but (50, 100)
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Fig. 5. Comparison of the best approximation method with Tsutsui and Ghosh’s implicit averaging (single disturbed) on different EA parameter settings. (a) TP
3,d = 5.(b) TP 6,d = 5 (averaged over 20 runs).
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Fig. 6. Self-adaptation of the step-sizes (typical run). (a) Multiple models with quadratic regression. (b) Single disturbed.

For a better understanding of how self-adaptation of the
step-sizes influences the performance of the algorithms, we
recorded the adaptation of the step-sizes for the explicit av-
eraging using multiple models combined with a quadratic
regression model, and single disturbed using the standard set-
ting for TP 6 of dimension 2 (cf. Fig. 6). Clearly, in the case of
multiple models with quadratic regression, the self-adaptation
works properly and the step-sizes converge after a certain
number of generations, whereas in the single disturbed ap-
proach, the step-sizes for both variables diverge seriously. This
phenomenon indicates that the implicit averaging method does
not work for standard evolution strategies with strategy param-
eter self-adaptation, probably because the estimated expected
fitness is too noisy, and thus the self-adaptation fails. A further
analysis of this finding is beyond the scope of this paper. We

refer to [3] for an extensive analysis on the effect of noise in
evolution strategies. To summarize, explicit averaging based on
approximation models seems to be more effective than implicit
averaging as in single disturbed.

6) Convergence Process: Finally, Fig. 7 shows some typical
convergence plots.

In the initial generations, none of the methods produces a suf-
ficiently accurate estimation. However, after some generations,
the space is filled with history data and the estimations become
increasingly accurate. With an increasing estimation accuracy,
the algorithm approaches the global optimum, in the case when
the regression models are used in combination with multiple
models or ensemble. The interpolation methods do not manage
to reduce the estimation error significantly over time, and thus
fails to converge to the global optimum.
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Fig. 7. Convergence and development of the estimation error on the 5-D TP 6. Estimation error is calculated fexp (z) - fexp(r), where fexp (l) is the estimated
expected fitness and fex,, () is the real expected of the best individual (averaged over 20 runs). (Upper row) Quadratic regression with different model distribution
methods (cf. Table I), (top-left) performance and (top-right) corresponding estimation error. (Lower row) Multiple models with different approximation methods,
(bottom-left) performance and (bottom-right) corresponding estimation error. Convergence and improvement of estimation accuracy are reinforcing.

C. MO Results

In the MO approach, we use the multiple models method only,
since this method has shown to be most effective in the SO simu-
lations. Fig. 8 compares the median attainment surface achieved
by different approximation models for different problems. For
clarity, the methods are additionally compared in Table V, based
on their rank regarding the hypervolume (area above the median
attainment curve in Fig. 8).

Let us first consider the 5-D TP 7. The median attainment
surface produced when using the real (fexp, fvar) dominates
all suggested methods almost everywhere. The weighted his-
tory method fails to find solutions with a low variance. A pos-
sible explanation for this might be the sparsity of history data:
If only a small number of history data points are located within
the disturbance range of an individual (perhaps only one), this
results in seriously wrong estimations of the fitness variance. At
the same time, the effect on fo.p-estimation might be moderate
since there exists no tradeoff between the raw fitness and the ex-
pected fitness on the MO test problems.

Among the approximation models, the quadratic models
seem to work best, and among those, regression works better
than interpolation.

Next, we consider the 2-D TP 8 [Fig. 8(b)]. Here, the re-
sults are less clear. However, the quadratic regression model
again yields the best results of all approximation models. Also,
weighted history and linear interpolation are clearly inferior.

Finally, Fig. 8(c) shows the results on the 5-D TP 9. Clearly,
the quadratic regression model performs best (again), followed
by the linear regression model. Again, weighted history fails to
find solutions for a low variance. Somewhat surprisingly, as can
be seen in Table V, quadratic interpolation performs poorly on
this problem.

VII. CONCLUSION AND DISCUSSIONS

The aim of this work was to explore new methods for effi-
cient search for robust solutions, i.e., methods that require only
a small number of fitness function evaluations. We investigated
how information about the fitness surface that is collected
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Fig. 8. MO simulation results. Median attainment surfaces (11 runs). (a) TP 7,d = 5. (b) TP 8,d = 2. (¢) TP 9,d = 5.

TABLE V
METHODS RANKED ACCORDING TO HYPERVOLUME OF MEDIAN ATTAINMENT
SURFACE (LOW RANKS CORRESPOND TO LARGER HYPERVOLUME AND
ARE BETTER)

TP 7 TP 8 TP 9

Approach =5 ([@d=2) (d=5) Avg
Weighted history 6 5 4 5
Linear interpolation 4 6 5 5
Quadratic interpolation 3 3 6 4
Linear regression 5 4 3 4
Quadratic regression 2 2 2 2
Real fexp 1 1 1 1

throughout the run of an EA can be exploited most effectively
for the purpose of robustness estimation. For both SO and MO
approaches to robust solutions, we showed that the suggested
methods improve the search performance compared with some
well-known existing approaches to robustness optimization
like implicit averaging (single disturbed) [37] or weighted
explicit averaging (weighted history). Comparing different
approximation models, we found for both approaches that
regression seems to be the preferred approximation method for
robustness optimization. This was somewhat surprising as the
fitness function is deterministic. However, the reason of the
poor performance of interpolation lies in its property of being
liable to severe estimation errors. Thus, the standard deviation
of the estimation error increases and misguides the search.

We introduced multiple methods to distribute and evaluate ap-
proximation models. Besides the rather intuitive single model
and multiple models, we also investigated two additional ap-
proaches called nearest model and ensemble. Although the en-
sembles were based on a very simple model distribution, this ap-
proach yields significant improvements in some cases. Although
at a much higher cost, the multiple models approach guides the
search most effectively in our simulations.

No definite conclusion can be drawn concerning whether a
linear or a quadratic model guides the search better. However,
since it becomes impossible with a limited number of training
data to build a quadratic model in higher dimensions, a linear
model must be used, which fortunately turned out to be as good
as the quadratic in most cases when combined with the best
model distribution method, namely, multiple models.

Two promising ideas for future research arise from the above
findings. First, it is very desirable to develop a more sophis-
ticated model distribution strategy so that the models are able
to better describe the fitness landscape searched by the current

population. Second, it would be very interesting to further in-
vestigate the influence of ensembles of approximation models
on the search performance.

The MO approach to robustness optimization represents a
greater challenge to our new methods. The findings regarding
the choice of the approximation model are consistent with the
findings in SO: Regression is the recommended method, and the
quadratic model seems preferable (for variance estimation).

Scalability is an important issue if the proposed methods are
going to be employed to solve real-world problems. With an in-
creasing dimensionality d the approximation models require a
larger number of input data n;,. However, when local linear re-
gression is used, which has shown to be very effective in combi-
nation with multiple models, n;, increases linearly with d. Thus,
the computational cost for building high-dimensional linear re-
gression models is still acceptable compared with that of fitness
evaluations in many real-world problems. Applying the pro-
posed algorithms to complex real-world problems will be one
of our future research topics.

APPENDIX A
TEST PROBLEMS

The disturbance of each design variable is normally dis-
tributed with N (0, o), where o is chosen with respect to the
shape of the test function. In order to have a finite probability
distribution, we cut the normal distribution at its 0.05- and
0.95-quantiles. The test problems (test function, feasible x-do-
main, and o) are listed below s

fi1(x)
d
1 d
== s 0;101%, o =05
- ; fo,(z3), x €] | o 5
with fi, (z;)
_ 3, 02<a; <08
0, otherwise '
f2(x)
d
1 d
== ;f%(xi), x €[0;10]*, o=05
with f, (z;)
=8 —) e 0260 g <8
o otherwise -

f3(x)
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APPENDIX B
SAMPLING TECHNIQUES

The following sampling techniques are mentioned in this

paper.

o Stratified sampling [29] divides the space of possible dis-
turbances into regions of equal probability according to
the probability distribution of the noise and draws one
sample from every region.

* Latin hypercube sampling [27]: In order to draw n sam-
ples, the range of disturbances in each dimension is di-
vided into n parts of equal probability according to the

(a) (b)

Fig. 9. (a) Stratified sampling. (b) Latin hypercube sampling.

probability distribution, and n random samples are chosen
such that each quantile in each dimension is covered by
exactly one sample.

For an arbitrary distribution, the division into regions of equal
probability is done by calculating the respective quantiles. Fig. 9
illustrates the sampling methods for the case of uniform distri-
bution. Here, possible sample sets for the 2-D case are depicted.
In this illustration, the number of quantiles is 3 for both sam-
pling methods.
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