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I. Introduction 

Self-reconfigurable modular robots are autonomous robots with a variable morphology, where they are able to deliberately 

change their own shapes by reorganizing the connectivity of their modules to adapt to new environments, perform new tasks, or 

recover from damages. Each module is an independent unit that is able to connect to or detach from other units to form various 

structures / patterns. Compared with conventional robotic systems, self-reconfigurable robots are potentially more robust and 

more adaptable under changing environments.  

 

Modular robots can be generally classified into two groups, according to their geometric arrangements of the modules: the 

chain / tree-based architectures [1] [2] [3] [4] and the lattice-based architectures [5] [6] [7] [8] [9] [10] [11] [12] [13]. In the 

chain / tree-based architectures, the modules are connected in a topology of a chain or a tree, where the motion controls of the 

modules are executed sequentially. It is relatively easier to design and implement this kind of architectures.  In the lattice-based 

architecture, modules of a robot are usually arranged and connected in 3D patterns, such as a cubical or hexagonal grid, and the 

motion control of modules are carried out in parallel. Therefore, compared to the chain / tree-based architectures, the 

lattice-based architectures are more flexible and efficient to form complex structures, although the design and implementation of 

this kind of architectures are more difficult. From this point of view, lattice-based modular robots are more suited for dynamic 

environments. However, most existing lattice-based modular robotic systems can only reconfigure themselves into a few 

predefined patterns by following a set of user-defined rules. Although self-reconfiguration is believed to be the most important 

feature of modular robots, the ability to adapt their configuration autonomously under environmental changes largely remains to 

be demonstrated. 

 

In principle, both centralized and distributed controllers can be used for reconfiguring modular robots. However, centralized 

high-level controllers for lattice-based modular robots are vulnerable to system failures or malfunctions of robot modules. By 

contrast, decentralized controllers are more robust and flexible under uncertain environments. However, one major challenge in 

developing a decentralized controller for self-reconfigurable modular robots lies in the coordination of local behaviors of 

multiple modules to achieve the desired global pattern to adapt to environmental changes. To address this challenge, some 

researchers turn their attentions to biological systems, where rich examples can be found of which robust and complex emergent 

behaviors are generated through relatively simple local interactions in the presence of uncertainties [14][15]. Inspired by the 

biological concept of hormone, Shen et al. [16] proposed a hormone-inspired adaptive communication protocol and adaptive 

distributed control protocol to allow modules to use hormone-like messages to accomplish locomotion and 

self-reconfigurations.  Later, Schmickl et al. [17] developed a control system called AHHS (artificial homeostatic hormone 

systems) for the self-reconfiguration of robotic organisms, where the parameterization of the underlying dynamical system was 

encoded into a “genome” or the organism which is subject to selection through evolutionary algorithms. Stoy [18] proposed a 

cellular automata and gradients to control the self-reconfigurable modular robots. Pfeiffer and Bongard [19] mainly focused on 

using the evolutionary algorithms to generate the robot configurations using an embodied system. Recently, Spröwitz  et al. [20] 

developed reconfigurable modular robots called Roombots used as adaptive furniture, where Roombots can change shape and 

function adaptively according to  the needs of human users in a daily life. A central pattern generator (CPG) network was applied 

for locomotion control of the Roombots to produce robust, synchronized patterns for oscillatory and rotational joint movements.  

A stochastic optimization algorithm was used to optimize the CPG configurations.       

 

     Inspired by the embryonic development of multi-cellular organisms [21] and a mechanochemical model for cell 
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morphogenesis [22], we proposed a morphogenetic approach for a modular robot using a hybrid hierarchical model in our 

previous work [23]. In [23], there are two layers in the model, where the first layer is a look-up-table based method to predefine 

the target pattern, and the second layer is a gene regulatory network (GRN) based controller to move the modules to construct the 

target pattern.  The major limitation of this work is that the target pattern has to be predefined which cannot autonomously adapt 

to dynamic environments. Therefore, in this paper, we extend our previous work and propose a two-layer hierarchical 

morphogenetic mechanochemical framework for self-reconfiguration of modular robots. Layer 1 is responsible for autonomous 

generation of chemical patterns in a changing environment, which is based on a mechanochemical model.  Layer 2 aims to 

physically realize the target pattern for the modular robot, which is a gene regulatory network (GRN) based controller. 

Furthermore, to optimize the pattern design of modular robots, the covariance matrix adaptation evolution strategy (CMA-ES) 

[24][25] is employed to evolve the pattern parameters of the mechanochemical model. 

 

     The proposed modular robots are also called morphogenetic modular robots, belonging to a new emerging subfield of 

developmental robotics termed morphogenetic robotics [26].   Morphogenetic robotics (MR) refers to a class of methodologies 

in robotics for designing self-organizing, self-reconfigurable, and self-repairable single- or multi-robot systems using genetic 

and cellular mechanisms governing biological morphogenesis. MR can be categorized into three main areas: morphogenetic 

swarm robotic systems (MSR) [27][28][10], morphogenetic modular robots (MMR) [23][16], and morphogenetic body and 

brain design for robots (MBB) [29][30].  

    The rest of the paper is organized as follows.  The basic mechanics and locomotion design of a simulated lattice-based 

modular robot are described in Section II.  Section III presents the morphogenetic framework for self-organization of modular 

robots.  Section IV provides extensive simulation results to evaluate the proposed morphogenetic approach to 

self-reconfiguration of modular robots under changing environments. Section V concludes the paper with future work.  

II. CrossCube: A Simulated Modular Robot 

    CrossCube is a simulated lattice-based modular robot we developed in a robot simulator using a real time physics engine 

PhysX. Each module of CrossCube has a flexible single cubic shape like Molecube [13], which does not require much free space 

for modules to move around, similar to the mechanics of SUPERBOT [31][32][33] and MTRAN [8] [34] [35]. Each module of 

CrossCube is a cubical structure, having its own computing and communication resource and actuation capability. Like other 

modular robots, the connecting parts of the modules can easily be attached to or detached from other modules. Each module can 

perceive its local environment and communicate with its neighboring modules using on-board sensors.  

     Each CrossCube module consists of a core and a shell as shown in Fig. 1(a). The core is a cube with six universal joints. Their 

default heading directions include up, down, right, left, forward, and backward, respectively. Each joint can attach to or detach 

from the joints of its neighbor modules. The axis of each joint can be actively rotated, extended, and return to its default direction 

and length. 

 

 
Fig 1. Mechanical demonstration of CrossCube. (a) The joints; (b) The locks on the boundaries of the modules. (c) Rotation and extension of 

the joints of the modules. 

 

    The cross-concaves on each side of the shell restrict the movement trajectory of the joints, as shown in Fig. 1(a). The borders 

of each module can actively be locked or unlocked with the borders of other modules, as shown in Fig. 1(b).   Basic motions of 

modules in CrossCube include rotation, climbing and parallel motion. Fig. 1(c) illustrates a rotation movement of two modules. 

Parallel motion means that a module moves to an immediate neighboring position. Climbing motion means that a module moves 

to a diagonal neighboring position. Parallel motion and climbing motion allow a module of CrossCube to move to any position 

within the modular robot as long as the modules are connected. Since the major focus of this paper is the self-reconfiguration 

control algorithm, please refer to [23] for the detailed mechanical design of CrossCube.    
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III. The Morphogenetic Approach 

A.  Computational Modeling of Gene Regulatory Networks  

Multi-cellular morphogenesis is under the control of gene regulatory networks (GRNs). These GRNs control a number of 

important cellular behaviors, such as responding to the environment, regulating the cell cycle and governing the development of 

an organism. A large number of computational models for GRNs have been suggested [36][37][38], which can largely be 

divided into discrete models such as random Boolean networks and Markov models, and continuous models such as ordinary 

differential equations and partial differential equations. GRN models can also distinguish themselves between deterministic 

models and stochastic models according to their ability to describe stochasticity in gene expression.  

B. The Metaphor between the Self-Reconfigurable Modular Robots and Multi-cellular Organisms 

    The metaphor between reconfigurable modular robots and multi-cellular organisms is straightforward.  We can treat each unit 

in modular robots as a single cell. The similarities in control, communication and physical interactions between cells in 

multi-cellular organisms and modules in modular robots are obvious.  For example, the control in both modular robots and 

multi-cellular organisms is decentralized.  Furthermore, the global behaviors of both modular robots and multi-cellular 

organisms emerge through local interactions of the units, which include mechanic, magnetic and electronic mechanisms in 

modular robots, and chemical diffusion and cellular physical interactions such as adhesion in multi-cellular organisms. 

     Each unit of the modular robots contains a chromosome consisting of several genes that can produce different proteins.  The 

local communication between the modules can be setup by diffusing the proteins into neighboring modules. The concentration 

of diffused proteins decays over time and distance.  The space where each module located in a physical 3D world is divided into 

a set of discrete grids, where each grid is occupied by one module of modular robots.  The target configuration of modular robots 

is defined by the morphogen level of each grid.  A higher value of morphogen level indicates a higher priority for the grid to be 

filled by a module.       

C. The Proposed Hierarchical Framework 

To develop a morphogenetic approach to self-reconfiguration of modular robots, two steps must be achieved.  First, the target 

pattern that a modular robot needs to form has to be generated automatically based on the current environment, which is to be 

achieved by the layer 1 in the proposed hierarchical framework.  Second, the modular robot needs to self-organize their modules 

to physically realize the target pattern generated by layer 1, which is the task of layer 2 in our hierarchical framework.  Fig. 2 

shows a block diagram of this hierarchical morphogenetic framework.  
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Pattern
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Pattern
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Pattern/Body

Motion Control
Environment

Hierachical Morphogenetic Framework

 
 

Fig. 2.  A block diagram of the hierarchical morphogenetic framework. 

 

   The objective of this hierarchical morphogenetic model is to develop a more general distributed lattice-based modular robot 

which can reconfigure itself into any arbitrary patterns for locomotion tasks according to the current environment. For example, 

a vehicle-like pattern with wheels will be reconfigured if the robot detects that it is currently in an open space on a flat surface 

since this is the most efficient pattern to move faster.  Similarly, a walking robot with legs will be reconfigured if the robot finds 

out that it has to traverse a very rough terrain with lots of obstacles on a soft flat surface.  A climbing robot or a snake-like robot 

will be developed if the robots need to climb stairs or walls.   

D.  Layer 1: Chemical Pattern Formation   

Adaptation to environmental changes is of paramount importance in reconfigurable modular robots. A mechanism is needed 

to adaptively define and modify the target configuration of the modular robot in a changing environment. Adaptation of the 

global configuration of the modular robot can be triggered by local sensory inputs.  For such tasks, it is assumed that each 

module is equipped with a sensor to detect the distance between the module and obstacles in the environment.  Once a module 

receives such sensory feedback, the information will be passed on to its neighbors through local communication. In this way, a 

global change in configuration can be achieved. 
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Interestingly, morphogenesis of multi-cellular systems provides a nice example in which self-organizing pattern formation is 

realized through cell-cell and cell-environment interactions. One cellular environment is a complex mixture of non-living 

material that makes up the extracellular matrix (ECM) [22]. In biological systems, the ECM is the extracellular part of animal 

tissue secreted by the cells that usually provides structural support to the cells.  Meanwhile, the shape of ECM is also affected by 

the behaviors of the cells through the interactions between ECM and the cells. The interaction dynamics between the cells and 

the ECM can be described by a morphogenetic mechanochemical model proposed by Murray et al. [22][39]. In this model, the 

simultaneous development of pattern formation and morphogenesis is a closed-loop system where the extracellular matrix 

(ECM) can be treated as environmental constraints, which is, therefore, well suited for constructing layer 1 in a hierarchical 

GRN framework.       

 

      Main challenges in applying this mechanochemical model to self-reconfiguration of modular robots include: (1) the modules 

can only locate at discrete positions, while cells in organisms can move continuously. (2) In the mechanochemical model, the 

macro-level behavior of a large number of cells is considered in terms of density change, while in modular robots, the 

micro-level behavior of a much smaller number of modules is considered.  

      In this paper, we will tackle these issues using a virtual-cell (v-cell) based approach. The basic hypothesis and assumptions 

of this approach are listed as follows:  

  There are three basic components in this model: v-cells, ECM, and environment (including task requirements and local 

environmental constraints). At the beginning, a predefined number of v-cells start to proliferate from a fixed grid.  V-cells 

can proliferate, interact with other v-cells, and diffuse in a 3D space. The ECM and environment provide constraints on the 

v-cell behaviors.  The difference between the density of the v-cells and the ECM value defines the morphogen level of each 

grid of a modular robot, which will be read in by the GRN of layer 2.  

   Each discrete grid can contain multiple v-cells. The v-cells can only move to the grids that are either occupied by modules, 

or empty grids that are the modules‟ immediate neighbors.  By following these rules, the v-cells will not move to the grids 

that are occupied by obstacles or disconnected from the robot system. 

   Each grid is associated with one ECM value, which is determined by the density of v-cells of the immediate neighboring 

grids.  If more than one ECM value is generated on the same grid by v-cells from different grids, the final ECM value is the 

sum of all the generated ECM values.     

 

    Based on the above assumptions, a new mechanochemical model for self-organization of modular robots is developed.  As 

shown in Fig. 3, the v-cells (red dots) can move freely in the modules of a modular robot and their neighboring discrete grids, 

while the ECM and task requirements (for example, a locomotion task to traverse through different terrains) can produce 

environmental and task constraints to the behavior of the v-cells. 

 
Fig. 3. The virtual-cell based mechanochemical model at a macro-level view. 

 

The density of the v-cells and the ECM value in a grid can be defined as follows:  
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where in  and i represent the density of the v-cells and  the ECM value in grid i, respectively. The first term in Eqn. (1) denotes 

the proliferation rate of the v-cells, where N is the predefined maximum number of v-cells allowed in the grid, and ( Nr  ) is the 
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maximum value of linear proliferation rate of the v-cells in the grid. The proliferation rate of the v-cells will be expedited when 

the local density of v-cells is low, and will be reduced when the density of v-cells approaches to N.      

     ii MK   denotes the random dispersal of the v-cells, which depends on a dispersal control vector iK  and a density gradient 

vector iM  for grid i. Since the v-cells are allowed to move only to their immediate neighbors, v-cells can have up to six 

directions to move to: up, down, left, right, forward and backward. The dispersal control vector iK  is defined 

as , , , , ,up down left right forward backward

i i i i i i iK k k k k k k    , where each element of iK  represents the dispersal rate for each direction. A 

higher dispersal rate means a faster dispersal of the v-cells in that direction. A zero dispersal rate means that the v-cells cannot 

move to that direction.  To consider environmental constraints, for example, when an obstacle is detected, each dispersal control 

variable in vector 
iK  can further be defined as:  

0  if neighbor position  is occpied by obstacles

   otherwise 

s

i

s
k

h


 


                                              (3) 

where s

ik  is the dispersal control variable in direction s (i.e., up, down, left, right, forward, or backward) in grid i. h is a 

predefined constant. , , , , ,
T

up down left right forward backward

i i i i i i iM m m m m m m     is a vector that is affected by the density difference of v-cells 

between grid i and its 6 neighboring grids. For example, up

im  is defined as  max(0, )up

i i upm n n  ,where 
upn  and in  are v-cell 

densities of the upper neighboring grid and current grid i, respectively.  

     The flow control vector iK  plays an important role in dispersal of virtual cells. Expanding the second item of Eqn. (1), we 

have 
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which is the total number of v-cells that will flow out of the local grid i.  The diffusion to each direction is scaled by the 

corresponding element in iK .  The third item in Eqn. (1) describes how the density of v-cells is decreased by the ECM value on 

the same grid.  
k

rec
kn denotes the total densities of v-cells received by grid i from all the neighboring grids.  r, d, and a are 

predefined constants. 

       Eqn. (2) describes the dynamics of the ECM value.  The first item of Eqn. (2) describes how the density of local v-cells 

suppresses the ECM value.  The higher the density of v-cells, the more the ECM value is reduced.  The second item in Eqn. (2) 

denotes the process how the ECM value is generated in grid i based on the sum of densities of v-cells of neighboring grids.  

)( jji nf is the generated ECM value on grid i  by grid j, where  jn is v-cell density in grid j.   

    The detailed rules of )( jji nf depends on the target pattern. Here, we use a vehicle-like pattern as an example to explain how 

to define )( jji nf . This definition will be used for case study 1 in the experiments. We first provide the following design 

guidelines for the vehicle-like patterns. (1) The chassis of a vehicle pattern is normally designed as a rectangle. The total width 

of the vehicle is denoted by max min 1W x x   , where maxx  and minx  are the rightmost and leftmost positions of the vehicle 

pattern. (2) Wheel modules are needed on the left and right boundary of the chassis, and cannot be immediate neighbors, 

otherwise they cannot rotate freely. (3) The target pattern should be built from bottom up. Only when the bottom floor is filled up 

and there are still modules left, the top floor will be filled. Based on these guidelines, )( jji nf  can be calculated based on the 

following pseudo code.  

 

    Function )( jji nf : 

Initialization: 1 0f  , 2 0f  , and 
_ 0j lastn  . 

if ( grid j is at the left side boundary and grid i is not on the right side of grid j) 

  then 
1 100 jf n  ; 

if ( grid j is at the right side boundary and grid i is not on the left side of grid j) 

then 
1 100 jf n  ; 

    if ( 0jn  and 0_ lastjn , and grid i is located above grid j ) 

  then 
2 upf ECM ;  

 
_j last jn n ; 



 

 

6 

 

 

 Return 
1 2f f ; 

 

To optimize the chemical pattern formation using the mechanochemical model, the covariance matrix adaption evolution 

strategy (CMA-ES) is employed for tuning the parameters of )( jji nf in the model. CMA-ES is a stochastic, iterative 

optimization method belonging to the class of evolutionary algorithms (EAs) proposed by Hansen and Ostermeier [25][26].  For 

example, in the vehicle-like pattern, the parameters to be tuned are: the width of the vehicle W and upECM . More details are 

discussed in case study 1 in the experiments.  Based on different target patterns, different )( jji nf is applied. Therefore, different 

parameters will be tuned by CMA-ES.  

Based on the CMA-ES [25],   offspring are generated from  parents, where . Offspring individuals are generated by 

adding a random number generated from a normal distribution to a parent, or a recombination of a number of parents: 

 

),0(~ )()()()1( g
i

ggg
i CNmx 

      for 1, ,i                                          (5) 

 

where “~” denotes the same distribution on the left and right side.  
)1( g

ix is the i-th offspring individual in generation 1g , and 

x is a vector 
nRx , which consists of the parameters need to be evolved.  Vector 

ng Rm )(
 represents a recombination of a 

few parent individuals of generation g . 
)(g  is the step-size that controls the step length of mutation in generation g . 

)(gC  

denotes the covariance matrix in generation g  and ),0( )(g
i CN  is the i-th multivariate normal distribution with zero mean and 

covariance matrix 
)(gC . 

      The final target pattern is determined by the morphogen level in each grid.  In each discrete grid, the ECM value is inversely 

proportional to the density of the v-cells. As a result, v-cells tend to flow to the grids with lower ECM values.   Therefore, the 

morphogen level imp of grid i can be defined as the difference between the density of the v-cells and the ECM value in each grid 

as iiii znmp   , where iz  is a threshold which is determined by )( iin  so that all the grids with positive morphogen 

levels belong to the target pattern, and others have negative morphogen levels. A higher value of morphogen level indicates a 

higher priority for the grid to be filled by a module.  This mechanochemical process stops when the number of the grids with 

positive morphogen levels reaches the number of the available robot modules.  

Both v-cells and ECM are virtual objects which don‟t physically exist. They are represented by variables which are stored in 

the memory of each module and can be exchanged between the neighboring modules through diffusion.  For those grids 

occupied by modules, the density of v-cells and ECM value are estimated by the hosting modules.  For those empty grids where 

no module exists, the density of v-cells and ECM values are maintained by neighboring modules in a distributed way.  (Please be 

noted that only those empty grids which are immediate neighbors of the modules will be considered here).  For example,  one 

empty grid has two neighboring - modules A and B.  When module A updates the density value of v-cells and ECM value on one 

empty grid, module A will broadcast this change to its neighbors so that module B can update this change in its own memory, and 

vice versa.   

E. Layer 2: Physical Pattern Realization 

The physical configuration of the modular robots to the target pattern generated by layer 1 is controlled by a GRN model. To 

this end, we need to build a metaphor between a multi-cellular organism and a modular robot.  In this metaphor, each unit of the 

modular robot is considered as a cell containing a DNA.  The DNA consists of a number of genes that can produce different 

proteins. The proteins can diffuse into neighboring modules (cells), through which local communication between the modules 

can be established. The concentration of the diffused proteins decays over time and distance.   

     As described above, the target pattern of the modular robot is defined by morphogen levels associated to the grids. To place 

the modules in the grids with positive morphogen level and keep grids with negative morphogen level empty, a local coordinate 

system must be built up. This can be achieved by setting an arbitrary module to be the origin of the coordinate system [40], and 

thus, all other modules can figure out their relative positions to the module on the origin through local communication. With the 

help of relative positions and the morphogen levels of grids in the target pattern, each module can decide: (1) if attracting 

proteins should be produced to attract other modules to fill in its neighboring grids, or (2) if repelling proteins should be 

produced to remove neighboring modules, or (3) if the module should respond to the attraction and repellence requests sent out 

by other modules. Thus, the reconfiguration of the modular robot is controlled through changing the state of the individual 

modules.  

     In the following subsections, we first describe the finite state machine of a module.  Then, we introduce a GRN model that has 

two gene-protein pairs to control the desired state transitions of modules needed for realizing the target pattern.     

(1) Finite States of Modules: Each module can have five different states, namely, „stable‟, „unstable‟, „attracting‟, „repelling‟, 

and „repelled‟.    The “stable” state means the final state of the module. The “unstable” state means the module can respond to 
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attractions. The “attracting” state means the module is attracting other modules to fill in some of its neighboring grids.  The 

“repelling” state means the module is repelling unwanted neighboring modules away. The “repelled” state means that the 

module responds to repelling requests and moves away from the current grid. The finite state machine of these five states of 

modules is given in Fig. 4.  

When an „unstable‟ module arrives at the destination grid, it changes its state to “stable” (arrow a in Fig.  4). When a „stable‟ 

module has neighboring grids need to be filled, it will change its state to „attracting‟ (arrow b in Fig. 4) to attract „unstable‟ 

modules to fill in those grids. Once those neighboring grids are occupied, the „attracting‟ module returns to the „stable‟ state 

(arrow c in Fig. 4).  A „stable‟ module may also give up its current position to fill in a grid with higher morphogen level in the 

pattern by turning its state to „unstable‟ (arrow d in Fig. 4).  

Repelling

Unstable Attracting

Repelled

Stable

Repelling

Atrracting

a
d

b

c

i

f

g
g

f
h

e

g

j

 
Fig. 4. State transition of each module in CrossCube. 

 

   A „repelling‟ module rejects unwanted neighbor modules from their current positions by setting their states to „repelled‟(arrow 

g in Fig. 4). Then the „repelled‟ module moves away from its current position, and switches its state to „unstable‟ (arrow h in Fig. 

4).  A module can be triggered to the „repelling‟ state in two situations. The first one is when a „stable‟ module finds out that 

some of its neighboring modules need to be removed (with a negative morphogen level), it changes its state to „repelling‟ (arrow 

e in Fig. 4) and switches the state of those neighbors to „repelled‟ (arrow g in Fig. 3). When all the „repelled‟ modules have left, 

the „repelling‟ module returns to the „stable‟ state (arrow j in Fig. 4). The second situation is when a deadlock happens, where a 

moving module is blocked by its neighboring modules.   To resolve this deadlock, the blocked module switches its state to 

„repelling‟ (arrow f in Fig. 4), and attempts to change the state of all its neighbors to be „repelled‟ (arrow g in Fig. 4). This 

removes some of its neighboring modules to make room for the blocked module to move away. Then the „repelling‟ module 

returns to the „repelled‟ state (arrow i in Fig. 4). To prevent the deadlock situations, the repellent states always have a higher 

priority than the attracting states. 

    The state transitions of each module are controlled by a GRN model having two gene-protein pairs: an attracting gene-protein 

pair ),( AA pg  and a repelling gene-protein pair ),( pp pg  .   

(2) Gene-Protein Pair for Attraction:  The attracting gene-protein pair ),( AA pg  is used to control the transitions between 

„attracting‟, „stable‟ and „unstable‟ states in Fig. 4 based on the morphogen levels of the target pattern generated by layer 1. 

Initially, all modules are set as „unstable‟. After they are initialized with the target pattern and the relative position information 

to the origin, modules that are located in the grids with a positive morphogen level become „stable‟. A „stable‟ module initializes 

the gene expression level of its attracting gene Ag  to zero. 

     Basically the expression level of Ag  affects the state of the module as follows:   

_

_ _

_

'unstable'        if 

state 'stable'            if 

'attracting'      if 

A A L

A L A A H

A A H

g G

G g G

g G

 


  




                                                         (6) 

where _A LG  is a negative threshold and _A HG  is a positive threshold.   

Each „stable‟ module generates attracting protein Ap  for all the empty neighboring grids with a positive morphogen level. The 

local generated Ap  and received Ap  from other modules will regulate the expression level of Ag . When Ag  is higher than 

HAG _ , the state changes to “attracting” , and the attracting protein Ap  is diffused to other modules.  Ap  is defined as  

j
ij
A mpkp  1                                                                              (7) 
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where ij
Ap  is the concentration of attracting protein generated by module i for its neighbor grid  j.  1k  is the discount rate of 

ij
Ap over distance, which is a defined as 0.8 in experiments.  jmp is the morphogen level of grid j.  

The gene expression level of the attracting gene ( )Ag t  is defined by:  


k

rec
A

j

ij
A

i
A

i
A pkpktgk
dt

tdg
432 )(

)(
                                                  (8) 

where )(tg i
A  is the gene expression level of modular robot i. The first term in Eqn. (8) means that )(tg i

A will decay over time. 


j

ij
Ap represents the sum of all the generated attracting proteins by robot module i for its empty neighboring grids. The more 

proteins the module generates for its empty neighboring grid, the higher the Ag expression level it will have, which means it will 

have better chance to change its state from “stable” to “attracting”.  
k

rec
Ap is the sum of the protein concentrations received 

from other modules by robot module i. The module may turn to „unstable‟ if other modules have stronger attractions so that 

( )Ag t  is reduced to a value less than _A LG . Unstable modules choose to fill in the attracting grid with the highest 
AP   from all the 

received attracting proteins.  432  and ,, kkk  are constant coefficients.     

(3) Gene-Protein Pair for Repelling: The „repelling‟ and „repelled‟ states are controlled by the repelling gene-protein pair 

( ,P Pg p ). A „repelling‟ module generates Pp  and diffuses it to the neighboring modules that need to be repelled.  The repellent 

protein Pp is defined as a positive constant 0.7.  Each module has a gene Pg  whose expression level decides the state transition 

to “repelled” state.  The gene expression level of 
Pg  is initialized as 0 and can be regulated by Pp  through Eqn. (9) 

 rec
p

i
P

i
P pktgk
dt

tdg
65 )(

)(
                                                                     (9) 

state of grid i = repelled when   i
i
P mpg                                                        (10) 

where )(tg i
P is the gene expression level of the repellent gene at time t. rec

Pp  is the concentration of the received repellent 

protein. imp  is the morphogen level of the current grid. 65  and kk
 
are constant coefficients. The first item in Eqn. (9) denotes 

that ( )pg t  will decay over time. 
rec
Pp indicates the sum of all Pp received by module i from its immediate neighbors. 

Pg  is 

reduced with more received Pp . Eqn. (1) indicates that modules with a lower morphogen level are more likely to be repelled. 

F. Integration of the Hierarchical Framework 

Layer 1 model takes task requirements and environmental constraint as the system inputs. By using the mechanochemical 

model, the target pattern is generated with the assembly of grids with positive morphogen levels, which is the input of layer 2 

model.  The GRN model coordinates robot modules to fill in the target pattern in a distributed manner. This procedure is 

interleaved because the reconfiguration of robot modules controlled by layer 2 model may change available grids for v-cells and 

bring new environmental constraints to the modules. As a result, the target pattern is expanded gradually which will eventually 

meet task requirements and adapt to the environment. 

 

IV. Experimental Results 

   

  To evaluate the efficiency and robustness of the morphogenetic framework for self-reconfiguration of the modular robot, 

CrossCube, several case studies have been conducted in a robot simulator.  This simulator is used to simulate the behaviors and 

interaction of CrossCube with a physical world using C++ and the PhysX engine from nVidia 

(http://en.wikipedia.org/wiki/PhysX). In the following experiments, the system parameters of the hierarchical model are set up 

as follows. The parameters of the GRN model in layer 2 are: ,1,1,7.0 432  kkk  2,5.0 65  kk , _A LG  = -1, 
_A HG  = 1, 

and 
_ 2P LG   .  The parameters of the model in layer 1 are: r = 0.005, N = 200, d = 1, a = 0.05, b = 20 and e = 1.  For case 4, the 

CMA-ES method is employed to evolve the pattern parameters in the mechanochemical model to achieve optimal pattern 

formation.   

A. Case Study 1: Vehicle-like Pattern Formation 
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In case study 1, we focus on vehicle-like pattern formation.  Three different experiments are carried out.  The detailed rules of 

)( jji nf for vehicle-like pattern has been described in Section III.D.  The parameters in )( jji nf are defined as W = 4 and 

upECM =130. The flow control vector of v-cells is defined as 

1, 1, 1, 1, 1, 1up down left right forward backward

i i i i i ik k k k k k        . 

In the first experiment, 16 robot modules are initially deployed in a 4x4 square. The space available for robot modules for self- 

reconfiguration is a 4x5 space as shown in Fig. 5(a).  Fig. 5(a) is the initial configuration. Figs. 5(b)-(f) demonstrate the 

procedure of the self-reconfiguration of a modular robot using the hierarchical morphogenetic model. First, the v-cell based 

mechanochemical model of layer 1 is applied to create the target pattern based on the environmental constraints and target 

pattern requirements. Then, the GRN-based layer 2 model is employed to self-reconfigure the modules to physically realize the 

target pattern defined by chemical concentrations. 

 

      
                    (a)                              (b)                             (c)                                  (d)                                (e)                             (f) 

Fig. 5. Snapshots of the self-reconfiguration process using the proposed hierarchical morphogenetic model in a 4x5 space.  (a) The initial 

configuration of a modular robot in a 4x5 space. (b) 100 v-cells start to proliferate from a randomly-picked starting grid. (c) The final state of 

the distribution of the v-cells, where the candidate grids of the target pattern have been selected and the morphogen level of each grid is 

defined.   (d)(e) The procedure of constructing the target pattern using the GRN-based layer 2 model. (f) The final target pattern has been 

constructed by the modular robot. 

 

     Please note that the blue grids in Fig. 5 represent the real robot modules in the stable state. The pink grids represent the 

density distribution of v-cells in the robot modules, where the darker the color, the higher the density of the v-cells in the modules 

is. The grids in magenta color represent the obstacles in the environment. These representations apply to all of the following 

simulation results, unless otherwise stated.  

  In the second experiment, the same number of robot modules is initialized in the same way as in the first experiment but in a 

smaller 4x4 space. The parameters of )( jji nf are the same as in the first experiment.   Based on the new environmental 

constraints (i.e., a 4x4 square space) with the same pattern constraints (i.e., a vehicle pattern with wheels on both sides), a 

two-floor vehicle pattern is constructed following the same procedure of the previous experiment, as shown in Fig. 6.  The 

requirements of vehicle pattern are still well-met.   

 

      
                    (a)                               (b)                               (c)                               (d)                            (e)                                  (f) 

Fig. 6. Snapshots of the self-reconfiguration process using the proposed hierarchical morphogenetic model in a 4x4 space. The explanations 

of Fig. 6(a) to Fig. 6(f) are similar to Fig. 5. 

 

     In the third experiment, a vehicle-like pattern carrying cargo is generated using the proposed hierarchical model, and the 

vehicle pattern can also reconfigure the wheels to avoid obstacles in the environment by enabling them to make turns.  Snapshots 

of this experiment are shown in Fig. 7.  Since the robot needs to make a sharp 90 degree turn, the robot reconfigures the positions 

of wheels to make turns to avoid colliding with obstacles. 
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                    (a)                              (b)                                (c)                               (d)                            (e)        (f) 

Fig. 7.Snapshots of the reconfiguration of a vehicle robot carrying cargo, and r the positions of wheels to make a sharp 90 degree turn in order 

to avoid obstacles in the environment.   

 

B. Case Study 2: Self-Repairing 

    One important feature of reconfigurable modular robots is their ability to self-repair malfunctioned or damaged modules. For 

example, if some of the modules are damaged, the remaining modules will disconnect from those damaged modules and release 

new attracting proteins to attract existing modules on the grids with lower morphogen levels to fill in the grids of the damaged 

modules.   

     To evaluate the self-repairing performance of the GRN-based control in layer 2, another experiment is conducted here. As 

shown in Fig. 8 below, it is assumed that a vehicle-like pattern has been generated by layer 1, where the bottom-floor modules 

are functional modules and the top-floor modules are backups in the vehicle pattern. The backup modules have lower 

morphogen levels than those functional modules. When the vehicle is moving, an “explosion” occurs and some functional 

modules are blown away. The backup modules then move to fill in the damaged modules. Fig. 8 shows a snapshot of this 

self-repairing procedure using the GRN-based layer 2 model.  This experiment demonstrates that the proposed approach is able 

to self-repair a modular robot in case of failed modules.    

 

 
Fig. 8. Snapshots of the self-repairing of CrossCube using the GRN-based layer 2 model.  (a) A vehicle pattern is formed. (b) The vehicle 

pattern moves forward. (c) Some modules are blown off when the explosion happens.  (d) The failed part is filled up by the backup modules. 

(e) The vehicle is repaired.   (f) The repaired vehicle continues moving. 

 

C. Case Study 3: Pattern Adaptation in a Changing Environment – Climbing Stairs 

This case study is to verify the efficiency and robustness of the hierarchical model for a modular robot to adapt to 

environmental changes. More specifically, we want to show that a modular robot using the proposed hierarchical model is able 

to climb stairs by changing its pattern autonomously.  The starting grid of the robot is initialized with 4000 v-cells and the robot 

is distributed in a 3x3 square.  

    First, in order to trigger the robot to move forward, a forward “force” needs to be applied on v-cells.  To update the density of 

v-cells in each grid, this forward “force” can be obtained from 
k

rec
kn in Eqn. (1).   Second, we need to define )( jji nf for 

climbing patterns.  Since we want the pattern to be able to move forward and climb up the stairs, the major environmental 

constraint is that the v-cells should not diffuse in right, left, or backward directions. Diffusion of v-cells in the right or left 

direction will increase the width of the pattern during the traveling, which may eventually make the climbing impossible. 

Therefore, if the grid j is at the leftmost or rightmost position of the pattern, ( ) 100*ji j jf n n , where i can be the left or right 

grid of j, the width should be kept the same during the climbing.  

Third, since the robot has to climb up on the stairs, the v-cells moving up should be encouraged and moving down should be 

restricted. Therefore the dispersal control vector is defined as 1, 0,up down

i ik k   0.5,left

ik   0.5,right

ik   0.7,forward

ik  and 

0.7backward

ik  .  
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               (a)                              (b)                                (c)                               (d)                            (e)        (f) 

Fig. 9. Snapshots demonstrating the reconfigurable processes in the stair-climbing case using the proposed hierarchical model.   

 

A set of  illustrations showing the adaptation of the vehicle pattern to environmental changes is shown in Fig. 9.  The black 

cubes are „unstable‟ modules. When the stairs in the environment are detected in front of the robot, new target patterns are 

automatically generated to allow the robots to climb the stairs. Since this is a distributed system, where each module makes its 

own movement decisions based only on its local information, the dynamics of layer 1 and layer 2 is updated asynchronously.  

More specifically, the v-cells first flow to an intermediate grid (not yet the target grid) using the layer 1 model, then the modules 

will move to these positions controlled by the GRN-based layer 2 model. These two processes interleave until the target pattern 

is realized or the robot successfully climbs over up stairs.   
 

D. Case Study 4: Pattern Adaptation in a Changing Environment – Traversing a Narrow Passage 

    To demonstrate that the modular robot using the proposed hierarchical morphogenetic model can autonomously adapt to 

changing environments, another experiment was conducted. To optimize the pattern design of the modular robot for a 

locomotion task, the CMA-ES is applied to evolve the pattern parameters of )( jji nf , which include the width of the robot (W) 

and 
upECM .   

     Here, for a locomotion pattern, the fitness function of the CMA-ES method is defined as the travel distance within a certain 

time period.  The longer the robot can travel within a certain time period, the better the current pattern is for the locomotion task.  

We set 20, 5    and 50  .  The parameters of the best evolved vehicle-like pattern are: W = 3 and 
upECM  =201. Fig. 10 

shows snapshots of the self-adaption procedure of the robot in a changing environment, where the robot changes its patternafter 

a narrower passage is detected.   

 

      
               (a)                              (b)                                (c)                               (d)                            (e)        (f) 

Fig. 10. Snapshots demonstrating a series of reconfigurable processes during locomotion in a changing environment, where the robot adapted 

its width to a narrow path.   

 

E. Case Study 5: More Complex Patterns 

It may be argued that snake-like robots can implement case studies 2, 3 and 4 with simple mechanical design and simple 

controllers. If so why do we need to develop such a complex model? As mentioned before, the objective of the proposed 

approach (both mechanical design and controllers) is to design a more general distributed-controlled modular robot which can 

reconfigure itself into any arbitrary patterns according to the current environment, such as a vehicle-like robot with wheels, 

walking robots with legs, climbing robots, or snake-like robots, etc.  To this end, it is impossible for the chain-based architecture 

with simple sequential controllers to reconfigure more complex patterns besides snake-like robots.   

   To show a more general case study that the proposed model can conduct while other simpler robots cannot, another 

experiment has been conducted. As shown in Fig. 11, a vehicle-like pattern carrying cargo is moving forward. Then an obstacle 

is detected. The robot has to cross over the obstacle as it cannot be avoided.  Therefore, the robot needs to reconfigure to a 

walking robot with six legs while still carrying the cargo on the top.  The robot can detect the height of the obstacle and establish 

the length of the legs. After the walking robot is built, the robot crosses over the obstacle.   

    Another argument may arise.  If there are any other simple models which can realize the same or similar functions of the 

proposed model?  The simple ways of realizing the same or similar functions of the proposed model have to be some rule-based 

models. However, in the rule-based models, we have to predefine the rules to predict all the possible situations in the 

environment, which is unpractical when the environment changes.    On the other side, the proposed model has a theoretical 
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foundation from biological systems, which shows us how biological systems can self-organize in a distributed manner, while it is 

difficult to realize the similar functions in the rule-based systems.   

 

    
                                                     (a)                              (b)                                (c)                               (d)                             

 

  
                                                    (e)        (f)                                 (g)                              (h) 

Fig. 11. Snapshots demonstrating a series of reconfiguration from a vehicle pattern to a 6-legged walking robot pattern, and the walking 

robots cross over an obstacle. Please note that the feet of the middle legs are reconfigured in the last row.  

 

V. Conclusion and Future Work 

In this paper, we presented a two-layer hierarchical morphogenetic approach to self-reconfiguration of modular robots, which 

is inspired by multi-cellular morphogenesis. Layer 1 of this morphogenetic framework is a virtual-cell based mechanochemical 

model that can generate appropriate target patterns for modular robots to adapt to environmental changes.   Layer 2 is a gene 

regulatory network (GRN) based controller that can automatically self-reconfigure the modular robots to achieve the desired 

configuration generated by layer 1. In addition, the CMA-ES is employed to evolve the parameters of the mechanochemical 

model so that a modular robot can generate new patterns to adapt to environmental changes. Such a hierarchical structure makes 

it possible to separate the control mechanisms for defining a target configuration from those for realizing it, similar to biological 

morphogenesis. In response to the environmental changes, the layer for defining the target pattern of the modular robot is able to 

adapt the target configuration, after which the second layer can re-organize the modules autonomously to realize the target 

configuration. 

     In the future, we will investigate the following three issues. First, we need to consider the motion control of the generated 

patterns in a systematic way since different patterns require different motion control capabilities. For example, the motion 

control of a walking robot is much more complex than a vehicle-like robot.  Second, we will develop a physical modular robot of 

CrossCube and implement the proposed hierarchical morphogenetic framework on real modular robots with the considerations 

of motion control issues. Last, more complex environmental changes will be implemented to evaluate the robustness of the 

proposed approach.    
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